Skip to main content

A Preliminary Study on Symbolic Fuzzy Cognitive Maps for Pattern Classification

  • Conference paper
  • First Online:
Applied Computer Sciences in Engineering (WEA 2019)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 1052))

Included in the following conference series:

Abstract

Within the neural computing field, Fuzzy Cognitive Maps (FCMs) are attractive simulation tools to model dynamic systems by means of well-defined neural concepts and causal relationships, thus equipping the network with interpretability features. However, such components are normally described by quantitative terms, which may be difficult to handle by experts. Recently, we proposed a symbolic FCM scheme (termed FCM-TFN) in which both weights and activation values are described by triangular fuzzy numbers. In spite of the promising results, the model’s performance in solving prediction problems remains uncertain. In this paper, we explore the prediction capabilities of the FCM-TFN model in pattern classification and concluded that our method is able to perform well when compared with traditional classifiers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    http://www.ics.uci.edu/~mlearn/MLRepository.html.

References

  1. Benavoli, A., Corani, G., Mangili, F.: Should we really use post-hoc tests based on mean-ranks? J. Mach. Learn. Res. 17, 1–10 (2016)

    MathSciNet  MATH  Google Scholar 

  2. Chen, C.: Extension of the topsis for group decision-making under fuzzy environment. Fuzzy Sets Syst. 114, 1–9 (2000)

    Article  Google Scholar 

  3. Demsar, J.: Statistical comparisons of classifiers over multiple data sets. J. Mach. Learn. Res. 7, 1–30 (2006)

    MathSciNet  MATH  Google Scholar 

  4. Dodurka, F., Yesil, E., Urbas, L.: Causal effect analysis for fuzzy cognitive maps designed with non-singleton fuzzy numbers. Neurocomputing 232, 122–132 (2017)

    Article  Google Scholar 

  5. Dujmovic, J., Larsen, H.: Generalized conjunction/disjunction. Int. J. Approximate Reasoning 46, 423–446 (2007)

    Article  MathSciNet  Google Scholar 

  6. Eshelman, L.J.: The CHC adaptive search algorithm: how to have safe search when engaging in nontraditional genetic recombination. Found. Genet. Algorithms 1, 265–283 (1991)

    Google Scholar 

  7. Felix, G., Nápoles, G., Falcon, R., Froelich, W., Vanhoof, K., Bello, R.: A review on methods and software for fuzzy cognitive maps. Artif. Intell. Rev. (2017)

    Google Scholar 

  8. Frias, M., Filiberto, Y., Nápoles, G., García-Socarrás, Y., Vanhoof, K., Bello, R.: Fuzzy cognitive maps reasoning with words based on triangular fuzzy numbers. In: Castro, F., Miranda-Jiménez, S., González-Mendoza, M. (eds.) MICAI 2017. LNCS (LNAI), vol. 10632, pp. 197–207. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-02837-4_16

    Chapter  Google Scholar 

  9. Gónzalez, M.P., De La Rosa, C.G.B., Moran, F.J.C.: Fuzzy cognitive maps and computing with words for modeling project portfolio risks interdependencies. Int. J. Innov. Appl. Stud. 15(4), 737–742 (2016)

    Google Scholar 

  10. John, G.H., Langley, P.: Estimating continuous distributions in Bayesian classifiers (1995)

    Google Scholar 

  11. Kosko, B.: Fuzzy cognitive maps. Int. J. Man-Mach. Stud. 24, 65–75 (1986)

    Article  Google Scholar 

  12. Lipton, Z.: The mythos of model interpretability. arxiv preprint arxiv:160603490 (2016)

  13. Molina, D., Pandolfi, D., Villagra, A., Leguizamón, G.: Applying CHC algorithms on radio network design for wireless communication. In: XX Congreso Argentino de Ciencias de la Computación (Buenos Aires 2014) (2014)

    Google Scholar 

  14. Nápoles, G., Mosquera, C., Falcon, R., Grau, I., Bello, R., Vanhoof, K.: Fuzzy-rough cognitive networks. Neural Netw. 97, 19–27 (2018)

    Article  Google Scholar 

  15. Papakostas, G., Koulouriotis, D.: Classifying patterns using fuzzy cognitive maps. In: Glykas, M. (ed.) Fuzzy Cognitive Maps, vol. 247, pp. 291–306. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-03220-2_12

    Chapter  Google Scholar 

  16. Platt, J.: Fast training of support vector machines using sequential minimal optimization. In: Schoelkopf, B., Burges, C., Smola, A. (eds.) Advances in Kernel Methods- Support Vector Learning. MIT Press, Cambridge (1998)

    Google Scholar 

  17. Quinlan, R.: Induction of decision trees. Mach. Learn. 1(1), 81–106 (1986)

    Google Scholar 

  18. Rickard, J.T., Aisbett, J., Yager, R.R.: Computing with words in fuzzy cognitive maps. In: Proceedings of World Conference on Soft Computing, pp. 1–6 (2015)

    Google Scholar 

  19. Rickard, J., Aisbett, J., Yager, R., Gibbon, G.: Fuzzy weighted power means in evaluation decisions. In: 1st World Symposium on Soft Computing (2010)

    Google Scholar 

  20. Rickard, J., Aisbett, J., Yager, R., Gibbon, G.: Linguistic weighted power means: comparison with the linguistic weighted average. In: IEEE International Conference on Fuzzy Systems (FUZZ-IEEE 2011), pp. 2185–2192 (2011)

    Google Scholar 

  21. Rosemblatt, F.: Principles of Neurodynamics. Spartan Books, New York (1962)

    Google Scholar 

  22. Rosero-Montalvo, P.D., et al.: Sign language recognition based on intelligent glove using machine learning techniques. In: 2018 IEEE Third Ecuador Technical Chapters Meeting (ETCM), pp. 1–5 (2018)

    Google Scholar 

  23. Saleh, S.H., Rivas, S.D.L., Gómez, A.M.M., Mohsen, F.S., Vá zquez, M.L.: Knowledge representation using fuzzy cognitive maps and hesitant fuzzy linguistic term sets. Int. J. Innov. Appl. Stud. 17(1), 312–319 (2016)

    Google Scholar 

  24. Su, W., Peng, W., Zeng, S., Pen, B., Pand, T.: A method for fuzzy group decision making based on induced aggregation operators and euclidean distance. Int. Trans. Oper. Res. 20, 579–594 (2013)

    Article  MathSciNet  Google Scholar 

  25. Van, L., Pedrycz, W.: A fuzzy extension of Saaty’s priority theory. Fuzzy Sets Syst. 11, 229–241 (1983)

    Article  MathSciNet  Google Scholar 

  26. Witten, I.H., Frank, E., Hall, M., Pal, C.: Data Mining: Practical Machine Learning Tools and Techniques (2017)

    Google Scholar 

  27. Zadeh, L.A.: Outline of a new approach to the analysis of complex systems ad decision processes. IEEE Trans. Syst. Man Cybern. SMC–3(1), 28–44 (1973)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mabel Frias .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Frias, M., Nápoles, G., Filiberto, Y., Bello, R., Vanhoof, K. (2019). A Preliminary Study on Symbolic Fuzzy Cognitive Maps for Pattern Classification. In: Figueroa-García, J., Duarte-González, M., Jaramillo-Isaza, S., Orjuela-Cañon, A., Díaz-Gutierrez, Y. (eds) Applied Computer Sciences in Engineering. WEA 2019. Communications in Computer and Information Science, vol 1052. Springer, Cham. https://doi.org/10.1007/978-3-030-31019-6_25

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-31019-6_25

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-31018-9

  • Online ISBN: 978-3-030-31019-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics