Skip to main content

Online Anomaly Detection via Incremental Tensor Decomposition

  • Conference paper
  • First Online:
Web Information Systems and Applications (WISA 2019)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 11817))

Included in the following conference series:

Abstract

Anomaly detection, though, is a common and intensively studied data mining problem in many applications, its online (incremental) algorithm is yet to be proposed and investigated, especially with respect to the use of tensor technique. As online (incremental) learning is becoming increasingly more important, we propose a novel online anomaly detection algorithm using incremental tensor decomposition. The online approach keeps updating the model while new data arrive, in contrast to the conventional approach that requests all data to re-build the model. In addition, the online algorithm can not only track the trend in time evolving data, but also requests less memory since only the new data is necessary for model updating. The experimental results show that the presented algorithm has sound discriminative power that is essential for anomaly detection. In addition, the number of anomalies can be flexibly adjusted by the parameters in the algorithm, which is necessary in some real-world scenarios. The effects of these parameters are also consistent using two experimental datasets.

M. Gao, Y. Zong and R. Li—Both authors contributed equally to this study.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Tensor decomposition and tensor factorization (TF) are often used interchangeably.

  2. 2.

    We use \(A,\;B,\;C\) on the superscripts to represent the respective modes in the tensor \(\mathcal {T}\).

  3. 3.

    \(\odot \)” denotes the Khatri–Rao product, “\(\circ \)” denotes the vector outer product, “\(*\)” denotes the Hadamard product that is the elementwise matrix product, the superscript “\(^+\)” denotes pseudo inverse.

References

  1. Brett, W.B., Tamara, G.K, et al.: MATLAB tensor toolbox version 2.6, February 2015

    Google Scholar 

  2. Bifet, A., Holmes, G., Kirkby, R., Pfahringer, B.: Moa: massive online analysis. J. Mach. Learn. Res. 11, 1601–1604 (2010)

    Google Scholar 

  3. Chandola, V., Banerjee, A., Kumar, V.: Anomaly detection: a survey. ACM Comput. Surv. 41(3), 15:1–15:58 (2009)

    Article  Google Scholar 

  4. Cai, D., Hou, D., Qi, Y., Yan, J., Lu, Y.: A distributed rule engine for streaming big data. In: Meng, X., Li, R., Wang, K., Niu, B., Wang, X., Zhao, G. (eds.) WISA 2018. LNCS, vol. 11242, pp. 123–130. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-02934-0_12

    Chapter  Google Scholar 

  5. Domingos, P., Hulten, G.: Mining high-speed data streams. In: Proceedings of the Sixth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD 2000, pp. 71–80. ACM, New York, NY, USA (2000)

    Google Scholar 

  6. Feng, J., Zhang, C., Hao, P.: Online learning with self-organizing maps for anomaly detection in crowd scenes. In: 2010 20th International Conference on Pattern Recognition, pp. 3599–3602 (2010)

    Google Scholar 

  7. Gujral, E., Pasricha, R., Papalexakis, E.: Sambaten: Sampling-based batch incremental tensor decomposition, pp. 387–395 (2018)

    Chapter  Google Scholar 

  8. Hitchcock, F.L.: The expression of a tensor or a polyadic as a sum of products. J. Math. Phys. 6(1), 164–189 (1927)

    Article  Google Scholar 

  9. Kolda, T.G., Bader, B.W.: Tensor decompositions and applications. SIAM Rev. 51(3), 455–500 (2009)

    Article  MathSciNet  Google Scholar 

  10. Laxhammar, R., Falkman, G.: Online learning and sequential anomaly detection in trajectories. IEEE Trans. Pattern Anal. Mach. Intell. 36(6), 1158–1173 (2014)

    Article  Google Scholar 

  11. Lev-ari, H.: Efficient solution of linear matrix equations with application to multistatic antenna array processing. Commun. Inf. Syst. 5, 123–130 (2005)

    MathSciNet  MATH  Google Scholar 

  12. Li, J., Han, G., Wen, J., Gao, X.: Robust tensor subspace learning for anomaly detection. Int. J. Mach. Learn. Cybern. 2(2), 89–98 (2011)

    Article  Google Scholar 

  13. Nickel, M., Tresp, V.: Tensor factorization for multi-relational learning. In: Blockeel, H., Kersting, K., Nijssen, S., Železný, F. (eds.) ECML PKDD 2013. LNCS (LNAI), vol. 8190, pp. 617–621. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40994-3_40

    Chapter  Google Scholar 

  14. Papalexakis, E.E., Faloutsos, C., Sidiropoulos, N.D.: Tensors for data mining and data fusion: models, applications, and scalable algorithms. ACM Trans. Intell. Syst. Technol. 8(2), 16:1–16:44 (2016)

    Article  Google Scholar 

  15. Sun, J., Tao, D., Faloutsos, C.: Beyond streams and graphs: Dynamic tensor analysis. In: Proceedings of the 12th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD 2006, pp. 374–383. ACM, New York, NY, USA (2006)

    Google Scholar 

  16. Sun, J., Tao, D., Papadimitriou, S., Yu, P.S., Faloutsos, C.: Incremental tensor analysis: theory and applications. ACM Trans. Knowl. Discov. Data 2(3), 11:1–11:37 (2008)

    Article  Google Scholar 

  17. Tucker, L.R.: Some mathematical notes on three-mode factor analysis. JPsychometrika 31(3), 279–311 (1966)

    Article  MathSciNet  Google Scholar 

  18. Vespe, M., Visentini, I., Bryan, K., Braca, P.: Unsupervised learning of maritime traffic patterns for anomaly detection. In: 9th IET Data Fusion & Target Tracking Conference (DF & TT 2012): Algorithms & Applications, p. 14. IET (2012)

    Google Scholar 

  19. Li, Y., Wen, Y., Yuan, X.: Online aggregation: a review. In: Meng, X., Li, R., Wang, K., Niu, B., Wang, X., Zhao, G. (eds.) WISA 2018. LNCS, vol. 11242, pp. 103–114. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-02934-0_10

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiangcheng Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Gao, M. et al. (2019). Online Anomaly Detection via Incremental Tensor Decomposition. In: Ni, W., Wang, X., Song, W., Li, Y. (eds) Web Information Systems and Applications. WISA 2019. Lecture Notes in Computer Science(), vol 11817. Springer, Cham. https://doi.org/10.1007/978-3-030-30952-7_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-30952-7_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-30951-0

  • Online ISBN: 978-3-030-30952-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics