Skip to main content

Improving Efficiency in the Electricity Grid by a New Decentralized Control Scheme

  • Conference paper
  • First Online:
  • 678 Accesses

Abstract

Nowadays, utility grids bear certain losses and inefficiencies. For example joule losses in transport lines, control effort when matching supply and demand, and difficulties in admitting intermittent power sources. This work presents a new scheme that palliates all of them, improving the efficiency of the grid. The scheme is focused on matching supply and demand in an end-to-end approach, turning the grid in an Internet of Energy where each user (producer or consumer) can buy or sell their energy without intermediaries at any time. The scheme establishes a decentralized control of the grid which means lower balance error and control effort. The access for intermittent power sources is opened up which foster distributed generation, therefore joule losses decrease. The requirements are a storage device for each user and the availability of ICT technologies. This contribution explains the scheme and analyzes its implementation.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Ai, Q., Wang, X., He, X.: The impact of large-scale distributed generation on power grid and microgrids. Renew. Energy 62, 417–423 (2014)

    Article  Google Scholar 

  2. Mehigan, L., Deane, J.P., Gallachóir, B.P.Ó., Bertsch, V.: A review of the role of distributed generation (DG) in future electricity systems. Energy 163, 822–836 (2018)

    Article  Google Scholar 

  3. Sajadi, A., Strezoski, L., Strezoski, V., Prica, M., Loparo, K.A.: Integration of renewable energy systems and challenges for dynamics, control, and automation of electrical power systems. Wiley Interdiscip. Rev. Energy Environ. 8(1), e321 (2019)

    Article  Google Scholar 

  4. Wang, P., Liang, D.H., Yi, J., Lyons, P.F., Davison, P.J., Taylor, P.C.: Integrating electrical energy storage into coordinated voltage control schemes for distribution networks. IEEE Trans. Smart Grid 5(2), 1018–1032 (2014)

    Article  Google Scholar 

  5. Guo, H., Wang, F., James, G., Zhang, L., Luo, J.: Graph theory based topology design and energy routing control of the energy internet. IET Gener. Transm. Distrib. 12(20), 4507–4514 (2018)

    Article  Google Scholar 

  6. Strasser, T., et al.: A review of architectures and concepts for intelligence in future electric energy systems. IEEE Trans. Ind. Electron. 62(4), 1 (2014)

    Google Scholar 

  7. Amini, M.H., Nabi, B., Haghifam, M.: Load management using multi-agent systems in smart distribution network. IEEE Power & Energy Society General Meeting, pp. 1–5 (2013)

    Google Scholar 

  8. Wang, Q., Zhang, C., Ding, Y., Xydis, G., Wang, J., Østergaard, J.: Review of real-time electricity markets for integrating Distributed Energy Resources and Demand Response. Appl. Energy 138, 695–706 (2015)

    Article  Google Scholar 

  9. Deng, R., Yang, Z., Chow, M., Chen, J.: A survey on demand response in smart grids: mathematical models and approaches. IEEE Trans. Ind. Inform. 11(3), 570–582 (2015)

    Article  Google Scholar 

  10. Maharjan, S., Zhang, Y., Gjessing, S., Tsang, D.H.K.: User-centric demand response management in the smart grid with multiple providers. IEEE Trans. Emerg. Top. Comput. 5(4), 494–505 (2017)

    Article  Google Scholar 

  11. Nasirian, V., Shafiee, Q., Guerrero, J.M., Lewis, F.L., Davoudi, A.: Droop-free distributed control for AC microgrids. IEEE Trans. Power Electron. 31(2), 1600–1617 (2016)

    Article  Google Scholar 

  12. Hu, J., Cao, J., Guerrero, J.M., Yong, T., Yu, J.: Improving frequency stability based on distributed control of multiple load aggregators. IEEE Trans. Smart Grid 8(4), 1553–1567 (2017)

    Article  Google Scholar 

  13. Kim, B.G., Zhang, Y., Van Der Schaar, M., Lee, J.W.: Dynamic pricing and energy consumption scheduling with reinforcement learning. IEEE Trans. Smart Grid 7(5), 2187–2198 (2016)

    Article  Google Scholar 

  14. Prokopenko, M., Zeman, A., Li, R.: Homeotaxis: coordination with persistent time-loops. In: Asada, M., Hallam, J.C.T., Meyer, J.A., Tani, J. (eds.) From Animals to Animats 10. SAB 2008. LNCS, vol 5040, pp. 403–414. Springer, Heidelberg (2008)

    Google Scholar 

  15. Reddy, S.S., Bijwe, P.R.: An efficient optimal power flow using bisection method. Electr. Eng. 100(4), 1–13 (2018)

    Article  Google Scholar 

  16. Huang, A.Q., Crow, M.L., Heydt, G.T., Zheng, J.P., Dale, S.J.: The future renewable electric energy delivery and management (FREEDM) system: the energy internet. Proc. IEEE 99(1), 133–148 (2011)

    Article  Google Scholar 

  17. Bedi, G., Venayagamoorthy, G.K., Singh, R., Brooks, R.R., Wang, K.C.: Review of Internet of Things (IoT) in electric power and energy systems. IEEE Internet Things J. 5(2), 847–870 (2018)

    Article  Google Scholar 

  18. Olivares, D.E., et al.: Trends in microgrid control. IEEE Trans. Smart Grid 5(4), 1905–1919 (2014)

    Article  Google Scholar 

  19. Park, C., Yong, T.: Comparative review and discussion on P2P electricity trading. Energy Procedia 128, 3–9 (2017)

    Article  Google Scholar 

  20. Open Utility: A glimpse into the future of Britain’s energy economy. White Pap., no. Copyright Open Utility Ltd 2016, pp. 1–25 (2016)

    Google Scholar 

  21. Vardakas, J.S., Zorba, N., Verikoukis, C.V.: A survey on demand response programs in smart grids: pricing methods and optimization algorithms. IEEE Commun. Surv. Tutorials 17(1), 152–178 (2015)

    Article  Google Scholar 

  22. Han, H., Hou, X., Yang, J., Wu, J., Su, M., Guerrero, J.M.: Review of power sharing control strategies for islanding operation of AC microgrids. IEEE Trans. Smart Grid 7(1), 200–215 (2016)

    Article  Google Scholar 

  23. Douglas, R., Charbonneau, A., Gertsvolf, M.: Remote calibration of time from NTP servers. Metrologia 55(6), 855 (2018)

    Article  Google Scholar 

  24. Ayaz, M.S., Azizipanah-Abarghooee, R., Terzija, V.: European LV microgrid benchmark network: Development and frequency response analysis. In: IEEE International Energy Conference (ENERGYCON), pp. 1–6 (2018)

    Google Scholar 

  25. Kundur, P.: Power System Stability and Control [pt. I]. McGraw-Hill Education, New York (1994)

    Google Scholar 

  26. Richardson, I., Thomson, M.: Domestic electricity demand model - simulation example. https://dspace.lboro.ac.uk/2134/5786. Accessed 01 Feb 2019

  27. Chatterjee, A., Mohanty, K.B.: Current control strategies for single phase grid integrated inverters for photovoltaic applications-a review. Renew. Sustain. Energy Rev. 92(May), 554–569 (2018)

    Article  Google Scholar 

  28. Zhang, S., Pan, N.: Supercapacitors performance evaluation. Adv. Energy Materials 5(6), 1401401 (2015)

    Article  Google Scholar 

  29. Datasheet of a supercapacitor of 24V, 9F, 0,139Ω. https://www.maxwell.com/images/documents/24V_9F_ds_3001967_datasheet.pdf. Accessed 21 June 2019

  30. Datasheet of a AC/DC converter with an efficiency of 93%. https://autosolar.es/pdf/FICHA-INVERSOR-MUST-3000W-24V-MPPT50.pdf. Accessed 21 June 2019

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. A. López-García .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

López-García, D.A., Torreglosa, J.P., Vera, D. (2020). Improving Efficiency in the Electricity Grid by a New Decentralized Control Scheme. In: Monteiro, J., et al. INCREaSE 2019. INCREaSE 2019. Springer, Cham. https://doi.org/10.1007/978-3-030-30938-1_31

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-30938-1_31

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-30937-4

  • Online ISBN: 978-3-030-30938-1

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics