Skip to main content

Nanolipidic Carriers as Potential Drug Delivery Vehicles in Alzheimer’s Disease

  • Chapter
  • First Online:
Nanobiotechnology in Neurodegenerative Diseases

Abstract

Alzheimer’s disease (AD) is the most common cause of dementia accounting for about 60–80% of the cases. With the rise of population of elderly people all over the world, providing greater medical relief to the patients suffering from Alzheimer’s disease has become a matter of great urgency. The exact etiology of AD is still unexplained but several hypotheses explaining the pathophysiology of AD have been put forward.

The currently approved pharmacotherapy of AD utilizes cholinesterase inhibitors and NMDA receptor antagonists which provide only symptomatic relief. The drugs used for treatment of Alzheimer’s disease should be able to cross the blood-brain barrier (BBB) and reach the central nervous system before the therapeutic effect can be exerted. Therefore, it is a big challenge to design drug delivery system (DDS) capable of targeting drugs to the intended delivery site in the brain.

Lipid-based nanosized drug delivery systems seem to be very promising in delivering the entrapped drug to the brain by virtue of their lipidic nature and small size. Lipid-based nanocarriers have the added advantage of very low cytotoxicity and avoidance of P-glycoprotein-mediated efflux activity of brain endothelial cells apart from other advantages like ability to entrap both hydrophobic and hydrophilic drugs and greater entrapment efficacy. The aim of the present chapter to review the treatment options currently available for Alzheimer’s disease and various lipid-based nanocarrier systems explored for enhancing the therapeutic efficacy of anti-Alzheimer drugs along with the challenges in targeting delivery of drugs to the brain.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abbott NJ, Ronnback L, Hansson E (2006) Astrocyte-endothelial interactions at the blood-brain barrier. Nat Rev Neurosci 7:41–53

    Article  CAS  PubMed  Google Scholar 

  • Adlard PA, Bush AI (2006) Metals and Alzheimer’s disease. J Alzheimers Dis 10(2–3):145–163

    Article  PubMed  Google Scholar 

  • Albert MS, DeKosky ST, Dickson D, Dubois B, Feldman HH, Fox N (2011) The diagnosis of mild cognitive impairment due to Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement 7(3):270–279

    Article  PubMed  PubMed Central  Google Scholar 

  • Allegri R, Guekht A (2012) Cerebrolysin improves symptoms and delays progression in patients with Alzheimer’s disease and vascular dementia. Drugs Today (Barc) 48:25–41

    Article  CAS  Google Scholar 

  • Alzheimer’s Association (2006) Early-onset dementia: a national challenge, a future crisis. Alzheimer’s Association, Washington

    Google Scholar 

  • Alzheimer’s Association (2012) Alzheimer’s disease facts and figures. Alzheimers Dement 8:131–168

    Article  Google Scholar 

  • Alzheimer’s Association (2018) Alzheimer’s disease facts and figures. Alzheimers Dement 14(3):367–429

    Article  Google Scholar 

  • Anand P, Kunnumakkara AB, Newman RA, Aggarwal BB (2007) Bioavailability of curcumin: problems and promises. Mol Pharm 4(6):807–818

    Article  CAS  PubMed  Google Scholar 

  • Asuni AA, Boutajangout A, Quartermain D, Sigurdsson EM (2007) Immunotherapy targeting pathological tau conformers in a tangle mouse model reduces brain pathology with associated functional improvements. J Neurosci 27(34):9115–9129

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ballatorea C, Brundenb KR, Trojanowskib JQ, Lee VMY, Smith AB, Huryn D (2011) Modulation of protein-protein interactions as a therapeutic strategy for the treatment of neurodegenerative tauopathies. Curr Top Med Chem 11(3):317–330

    Article  Google Scholar 

  • Bartzokis G, Lu PH, Mintz J (2007) Human brain myelination and amyloid beta deposition in Alzheimer’s disease. Alzheimers Dement 3:122–125

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bateman RJ, Xiong C, Benzinger TL, Fagan AM, Goate A, Fox NC (2012) Clinical and biomarker changes in dominantly inherited Alzheimer’s disease. N Engl J Med 367(9):795–804

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bauer C, Pardossi PR, Dunys J, Roy M, Checler F (2011) γ-Secretase-mediated regulation of neprilysin: influence of cell density and aging and modulation by imatinib. J Alzheimers Dis 27(3):511–520

    Article  CAS  PubMed  Google Scholar 

  • Baum L, Ng A (2004) Curcumin interaction with copper and iron suggests one possible mechanism of action in Alzheimer’s disease animal models. J Alzheimers Dis 6(4):367–3778

    Article  CAS  PubMed  Google Scholar 

  • Belyaev ND, Nalivaeva NN, Makova NZ, Turner AJ (2009) Neprilysin gene expression requires binding of the amyloid precursor protein intracellular domain to its promoter: implications for Alzheimer disease. EMBO Rep 10(1):94–100

    Article  CAS  PubMed  Google Scholar 

  • Bernardi A, Frozza RL, Meneghetti A (2012) Indomethacin-loaded lipid-core nanocapsules reduce the damage triggered by Aβ1-42 in Alzheimer’s disease models. Int J Nanomedicine 7:4927–4942

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Blennow K, Leon MJ, Zetterberg H (2006) Alzheimer’s disease. Lancet 368:387–403

    Article  CAS  PubMed  Google Scholar 

  • Blurton-Jones JM, Kitazawa M, Martinez CH, Castello NA, Muller FJ, Loring JF, Yamasaki TR, Poon WW, Green KN, LaFerla FM (2009) Neural stem cells improve cognition via BDNF in a transgenic model of Alzheimer disease. Proceedings Of The National Academy Of Sciences Of The United States Of America 106:13594–13599

    Article  CAS  Google Scholar 

  • Bondì ML, Montana G, Craparo EF, Picone P, Capuano G, Carlo MD, Giammona G (2009) Ferulic acid-loaded lipid nanostructures as drug delivery systems for Alzheimer’s disease: preparation, characterization and cytotoxicity studies. Curr Nanosci 5:26–32

    Article  Google Scholar 

  • Cervellati C, Wood PL, Romani A, Valacchi G, Squerzanti M, Sanz JM, Ortolani B, Zuliani G (2016) Oxidative challenge in Alzheimer’s disease: state of knowledge and future needs. J Investig Med 64:21–32

    Article  PubMed  Google Scholar 

  • Chandra Bhatt P, Srivastava P, Pandey P, Khan W, Panda BP (2016) Nose to brain delivery of astaxanthin-loaded solid lipid nanoparticles: fabrication, radio labeling, optimization and biological studies. RSC Adv 6(12):10001–10010

    Article  CAS  Google Scholar 

  • Chen Y, Liu L (2012) Modern methods for delivery of drugs across the blood-brain barrier. Adv Drug Deliv Rev 64:640–665

    Article  CAS  PubMed  Google Scholar 

  • Chen KS, Nishimura MC, Armanini MP, Crowley C, Spencer SD, Phillips HS (1997) Disruption of a single allele of the nerve growth factor gene results in atrophy of basal forebrain cholinergic neurons and memory deficits. J Neurosci 17(19):7288–7296

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen L, Fischle W, Verdin E, Greene WC (2001) Duration of nuclear NF-kappaB action regulated by reversible acetylation. Science 293(5535):1653–1657

    Article  CAS  Google Scholar 

  • Chiu C, Miller MC, Monahan R, Osgood DP, Stopa EG, Silverberg GD (2015) P-glycoprotein expression and amyloid accumulation in human aging and Alzheimer’s disease: preliminary observations. Neurobiology 36:2475–2482

    CAS  Google Scholar 

  • Cirrito JR, Deane R, Fagan AM (2005) P-glycoprotein deficiency at the blood-brain barrier increases amyloid-beta deposition in an Alzheimer disease mouse model. J Clin Investig 115:3285–3290

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Corder EH, Saunders AM, Strittmatter WJ, Schmechel DE, Gaskell PC, Small GW, Roses AD, Haines JL, Pericak-Vance MA (1993) Gene dose of apolipoprotein E type 4 allele and the risk of Alzheimer’s disease in late onset families. Science 261:921–923

    Article  CAS  PubMed  Google Scholar 

  • Court JA, Johnson M, Religa D, Keverne J, Kalaria R, Jaros E, McKeith IG, Perry R, Naslund J, Perry EK (2005) Attenuation of Abeta deposition in the entorhinal cortex of normal elderly individuals associated with tobacco smoking. Neuropathol Appl Neurobiol 31(5):522–535

    Article  CAS  PubMed  Google Scholar 

  • Crystal A, Hope D, Anderson, Christopher M (2017) Review astrocyte dysfunction in Alzheimer disease. J Neurosci Res 1:2

    Google Scholar 

  • Cummings J (2017) Alzheimer’s disease drug development pipeline. Alzheimers Dement 3:367–384

    Google Scholar 

  • De Paula VJR, Guimarães FM, Diniz BS, Forlenza OV (2009) Neurobiological pathways to Alzheimer’s disease: amyloid-beta, TAU protein or both? Dement Neuropsychol 3:188–194

    Article  PubMed  PubMed Central  Google Scholar 

  • DeMattos RB, Bales KR, Cummins DJ, Dodart JC, Paul SM, Holtzman DM (2001) Peripheral anti-A beta antibody alters CNS and plasma A beta clearance and decreases brain A beta burden in a mouse model of Alzheimer’s disease. Proc Natl Acad Sci U S A 98(15):8850–8855

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dohgu S, Takata F, Yamauchi A, Nakagawa S, Egawa T, Naito M, Tsuruo T, Sawada Y, Niwa M, Kataoka Y (2005) Brain pericytes contribute to the induction and up-regulation of blood–brain barrier functions through transforming growth factor-beta production. Brain Res 1038:208–215

    Article  CAS  PubMed  Google Scholar 

  • Doll R, Peto R, Boreham J, Sutherland I (2000) Smoking and dementia in male British doctors: prospective study. Br Med J 320:1097

    Article  CAS  Google Scholar 

  • Dzamba D, Harantova L, Butenko O, Anderova M (2016) Glial cells—the key elements of Alzheimer’s disease. Curr Alzheimer Res 13:894–911

    Article  CAS  PubMed  Google Scholar 

  • Ellis RJ, Olichney JM, Thal LJ, Mirra SS, Morris JC, Beekly D, Heyman A (1996) Cerebral amyloid angiopathy in the brains of patients with Alzheimer’s disease: the CERAD experience, part XV. Neurology 46:1592–1596

    Article  CAS  PubMed  Google Scholar 

  • Ferretti MT, Iulita MF, Cavedo E, Chiesa PA, Dimech AS, Chadha AS, Baracchi F, Girouard H, Misoch S, Giacobini E (2018) Sex differences in Alzheimer disease—the gateway to precision medicine. Nat Rev Neurol 14:457–456

    Article  PubMed  Google Scholar 

  • Ferri CP, Prince M, Brayne C, Brodaty H, Fratiglioni L, Ganguli M, Hall K, Hasegawa K, Hendrie H, Huang Y (2005) Global prevalence of dementia: a Delphi consensus study. Lancet 366:2112–2117

    Article  PubMed  PubMed Central  Google Scholar 

  • Finsterwald C, Magistretti PJ, Lengacher S (2015) Astrocytes: new targets for the treatment of neurodegenerative diseases. Current Pharm Des 21:3570–3581

    Article  CAS  Google Scholar 

  • Frozza RL, Bernardi A, Hoppe JB, Meneghetti AB, Matté A, Battastini AM, Pohlmann AR, Guterres SS, Salbego C (2013) Neuroprotective effects of resveratrol against Aβ administration in rats are improved by lipid-core nano-capsules. Mol Neurobiol 47(3):1066–1080

    Article  CAS  PubMed  Google Scholar 

  • Fu R, Shen Q, Xu P, Luo JJ, Tang Y (2014) Phagocytosis of microglia in the central nervous system diseases. Mol Neurobiol 49:1422–1434

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gattaz WF, Talib LL, Schaeffer EL, Diniz BS, Forlenza OV (2014) Low platelet iPLA2 activity predicts conversion from mild cognitive impairment to Alzheimer’s disease: a 4-year follow-up study. J Neural Transm 121(2):193–200

    Article  CAS  PubMed  Google Scholar 

  • Giommarelli C, Zuco V, Favini E, Pisano C, Dal PF, De Tommasi N (2010) The enhancement of antiproliferative and proapoptotic activity of HDAC inhibitors by curcumin is mediated by Hsp90 inhibition. Cell Mol Life Sci J 67(6):995–1004

    Article  CAS  Google Scholar 

  • Golde T (2005) The A-beta hypothesis: leading us to rationally designed therapeutic strategies for the treatment or prevention of Alzheimer’s disease. Brain Pathol 15:84–87

    Article  CAS  PubMed  Google Scholar 

  • Gong CX, Iqbal K (2008) Hyperphosphorylation of microtubule-associated protein tau: a promising therapeutic target for Alzheimer disease. Curr Med Chem J 15:2321–2328

    Article  CAS  Google Scholar 

  • Gopal T (1999) The role of presenilins in Alzheimer’s disease. J Clin Invest 104(10):1321–1322

    Article  Google Scholar 

  • Graham AJ, Martin RCM, Teaktong T, Ray MA, Court JA (2002) Human brain nicotinic receptors, their distribution and participation in neuropsychiatric disorders. Curr Drug Targets CNS Neurol Disord 1(4):387–397

    Article  CAS  PubMed  Google Scholar 

  • Green RC, Cupples LA, Go R, Benke KS, Edeki T, Griffith PA (2002) Risk of dementia among white and African American relatives of patients with Alzheimer disease. J Am Med Assoc 287(3):329–336

    Article  Google Scholar 

  • Grossberg GT (2019) Present algorithms and future treatments for Alzheimer’s disease. J Alzheimers Dis 67:1157–1171

    Article  PubMed  PubMed Central  Google Scholar 

  • Hardy J, Selkoe DJ (2002) The amyloid hypothesis of Alzheimer’s disease: progress and problems on the road to therapeutics. Science 297:353–356

    Article  CAS  PubMed  Google Scholar 

  • Hartman RE, Laurer H, Longhi L, Bales KR, Paul SM, McIntosh TK, Holtzman DM (2002) Apolipoprotein E4 influences amyloid deposition but not cell loss after traumatic brain injury in a mouse model of Alzheimer’s disease. J Neurosci 22:10083–10087

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • He P, Shen Y (2009) Interruption of beta-catenin signaling reduces neurogenesis in Alzheimer’s disease. J Neurosci 29:6545–6557

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hebert LE, Weuve J, Scherr PA, Evans DA (2013) Alzheimer disease in the United States estimated using the 2010 census. Neurology 80(19):1778–1783

    Article  PubMed  PubMed Central  Google Scholar 

  • Henke H, Lang W (1983) Cholinergic enzymes in neocortex, hippocampus and basal forebrain of non-neurological and senile dementia of Alzheimer-type patients. Brain Res 267(2):281–291

    Article  CAS  PubMed  Google Scholar 

  • Holtzman DM, Herz J, Bu G (2012) Apolipoprotein E and apolipoprotein E receptors: normal biology and roles in Alzheimer disease. Cold Spring Herb Perspect Med 2:006312

    Article  CAS  Google Scholar 

  • Hong Q (2012) Current advances in the treatment of Alzheimer’s disease: focused on considerations targeting Aβ and tau. Transl Neurodegener 1:21. https://www.who.int/news-room/fact-sheets/detail/dementia

    Article  CAS  Google Scholar 

  • Husain MM, Trevino K, Siddique H, McClintock SM (2008) Present and prospective clinical therapeutic regimens for Alzheimer’s disease. Neuropsychiat Dis Treat 4(4):765–777

    Article  CAS  Google Scholar 

  • Hyman BT, Phelps CH, Beach TG, Bigio EH, Cairns NJ, Carrillo MC (2012) National Institute on Aging-Alzheimer’s Association guidelines on neuropathologic assessment of Alzheimer’s disease. Alzheimers Dement 8(1):1–13

    Article  PubMed  PubMed Central  Google Scholar 

  • Ismail MF, Elmeshad AN, Salem NA (2013) Potential therapeutic effect of nano-based formulation of rivastigmine on rat model. Int J Nanomedicine 8:393–406

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Jain KK (2012) Nanobiotechnology-based strategies for crossing the blood-brain barrier. Nanomedicine 7:1225–1233

    Article  CAS  PubMed  Google Scholar 

  • Jang JH, Surh YJ (2003) Protective effect of resveratrol on beta-amyloid-induced oxidative PC12 cell death, free radical. J Biol Med 34(8):1100–1110

    CAS  Google Scholar 

  • Jojo GM, Kuppusamy G, De A, Reddy-Karri VVSN (2019) Formulation and optimization of intranasal nanolipid carriers of pioglitazone for the repurposing in Alzheimer’s disease using Box-Behnken design. Drug Dev Ind Pharm 45(7):1061–1072

    Article  CAS  PubMed  Google Scholar 

  • Kaeberlein M, McDonagh T, Heltweg B, Hixon J, Westman EA, Caldwell SD, Napper A, Curtis R, DiStefano PS, Fields S, Bedalov A, Kennedy BK (2005) Substrate-specific activation of sirtuins by resveratrol. J Biol Chem 280(17):17038–17045

    Article  CAS  PubMed  Google Scholar 

  • Kamat PK, Rai S, Swarnkar S, Shukla R, Ali S, Najmi AK, Nath C (2013) Okadaic acid-induced tau phosphorylation in rat brain: role of NMDA receptor. Neuroscience 238:97–113

    Article  CAS  PubMed  Google Scholar 

  • Kantarci K, Weigand SD, Przybelski SA, Shiung MM, Whitwell JL, Negash S (2009) Risk of dementia in MCI: combined effect of cerebrovascular disease, volumetric MRI, and 1H MRS. Neurology 72(17):1519–1525

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Karran E, Mercken M, Strooper DB (2011) The amyloid cascade hypothesis for Alzheimer’s disease: an appraisal for the development of therapeutics. Nat Rev Drug Discov 10(9):698–712

    Article  CAS  PubMed  Google Scholar 

  • Khakh BS, Sofroniew MV (2015) Diversity of astrocyte functions and phenotypes in neural circuits. Nat Neurosci 18:942–952

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Khan A, Imam SS, Aqil M, Ahad A, Sultana Y, Ali A, Khan K (2016) Brain targeting of temozolomide via the intranasal route using lipid-based nanoparticles: brain pharmacokinetic and scintigraphic analyses. Mol Pharm 13:11

    Google Scholar 

  • Koh SH, Kim SH, Kwon H, Park Y, Kim KS, Song CW, Kim J, Kim MH, Yu HJ, Henkel JS, Jung HK (2003) Epigallocatechin gallate protects nerve growth factor differentiated PC12 cells from oxidative-radical-stress-induced apoptosis through its effect on phosphoinositide 3-kinase/Akt and glycogen synthase kinase-3. Brain Res Mol Brain Res 118(12):72–81

    Article  CAS  PubMed  Google Scholar 

  • Kok E, Haikonen S, Luoto T, Huhtala H, Goebeler S, Haapasalo H, Karhunen PJ (2009) Apolipoprotein E–dependent accumulation of Alzheimer disease–related lesions begins in middle age. Ann Neurol 65:650–657

    Article  CAS  PubMed  Google Scholar 

  • Koleske AJ (2013) Molecular mechanisms of dendrite stability. Nat Rev Neurosci 14:536–550

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Koponen S, Taiminen T, Kairisto V, Portin R, Isoniemi H, Hinkka S, Tenovuo O (2004) APOE-14 predicts dementia but not other psychiatric disorders after traumatic brain injury. Neurology 63:749–750

    Article  CAS  PubMed  Google Scholar 

  • Kumar A (2015) A review on Alzheimer’s disease pathophysiology and its management: an update. Pharmacol Rep 67:195–203

    Article  CAS  PubMed  Google Scholar 

  • Lemere CA, Masliah E (2010) Can Alzheimer disease be prevented by amyloid-beta immunotherapy? Nat Rev Neurol 6(2):108–119

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Levites Y, Amit T, Mandel S, Youdim MB (2003) Neuroprotection and neurorescue against Abeta toxicity and PKC-dependent release of nonamyloidogenic soluble precursor protein by green tea polyphenol (−)-epigallocatechin-3-gallate. FASEB J 17(8):952–954

    Article  CAS  PubMed  Google Scholar 

  • Li W, Tang Y, Fan Z, Meng Y, Yang G, Luo J, Ke ZJ (2013) Autophagy is involved in oligodendroglial precursor-mediated clearance of amyloid peptide. Mol Neurodegener 8:27

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lithell H, Hansson L, Skoog I, Elmfeldt D, Hofman A, Olofsson B, Trenkwalder P, Zanchetti A (2003) The Study on Cognition and Prognosis in the Elderly (SCOPE): principal results of a randomized double-blind intervention trial. J Hypertens 21:875–886

    Article  CAS  PubMed  Google Scholar 

  • Loureiro JA, Andrade S, Duarte A, Neves AR, Queiroz JF, Nunes C, Sevin E, Fenart L, Gosselet F, Coelho MA, Pereira MC (2017) Resveratrol and grape extract-loaded solid lipid nanoparticles for the treatment of Alzheimer’s disease. Molecules 13(2):22

    Google Scholar 

  • Luchsinger JA, Tang MX, Shea S, Mayeux R (2004) Hyperinsulinemia and risk of Alzheimer disease. Neurology 63:1187–1192

    Article  PubMed  Google Scholar 

  • Mahley RW, Rall SC Jr (2000) Apolipoprotein E: far more than a lipid transport protein. Annu Rev Genomics Hum Genet 1:507–537

    Article  CAS  PubMed  Google Scholar 

  • Marambaud P, Zhao H, Davies P (2005) Resveratrol promotes clearance of Alzheimer’s disease amyloid-beta peptides. J Biol Chem 280(45):37377–37382

    Article  CAS  PubMed  Google Scholar 

  • Masserini M (2013) Nanoparticles for brain drug delivery. ISRN Biochem 2013:238–428

    Article  CAS  Google Scholar 

  • McGleenon BM, Dynan KB, Passmore AP (1999) Acetylcholinesterase inhibitors in Alzheimer’s disease. Br J Clin Pharmacol 48(4):471–480

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mehta DC, Short JL, Nicolazzo JA (2013) Memantine transport across the mouse blood-brain barrier is mediated by a cationic influx H+ antiporter. Mol Pharm 10:4491–4498

    Article  CAS  PubMed  Google Scholar 

  • Misra S, Chopra K, Sinha VR, Medhi B (2015) Galantamine-loaded solid–lipid nanoparticles for enhanced brain delivery: preparation, characterization, in vitro and in vivo evaluations. Drug Deliv 23(4):1434–1443

    Article  PubMed  CAS  Google Scholar 

  • Morales I, Guzman-Martinez L, Cerda-Troncoso C, Farias GA, Maccioni RB (2014) Neuroinflammation in the pathogenesis of Alzheimer’s disease. A rational framework for the search of novel therapeutic approaches. Neuroscience 8:112

    Google Scholar 

  • Moyers SB, Kumar NB (2004) Green tea polyphenols and cancer chemoprevention: multiple mechanisms and endpoints for phase II trials. Nat Rev 62(5):204–211

    Google Scholar 

  • Mullane K, Williams M (2013) Alzheimer’s therapeutics: continued clinical failures question the validity of the amyloid hypothesis-but what lies beyond? Biochem Pharmacol 85:289–305

    Article  CAS  PubMed  Google Scholar 

  • Muntimadugu E, Dhommati R, Jain A, Challa VGS, Shaheen M, Khan W (2016) Intranasal delivery of nanoparticle encapsulated tarenflurbil: a potential brain targeting strategy for Alzheimer’s disease. Eur J Pharm Sci 92:224–234

    Article  CAS  PubMed  Google Scholar 

  • Nam DT, Arseneault M, Murthy V, Ramassamy C (2010) Potential role of acrolein in neurodegeneration and in Alzheimer’s disease. Curr Mol Pharmacol 3(2):66–78

    Article  CAS  Google Scholar 

  • Nelson AR, Sweeney MD, Sagare AP, Zlokovic BV (2016) Neurovascular dysfunction and neurodegeneration in dementia and Alzheimer’s disease. Biochem Biophys Acta 1862:887–900

    CAS  PubMed  Google Scholar 

  • Neves AR, Queiroz JF, Reis S (2016) Brain-targeted delivery of resveratrol using solid lipid nanoparticles functionalized with apolipoprotein. Eur J Nanobiotechnol 14(1):234–246

    Google Scholar 

  • Pallitto MM, Ghanta J, Heinzelman P (1999) Recognition sequence design for peptidyl modulators of beta-amyloid aggregation and toxicity. Biochemistry 38:3570–3578

    Article  CAS  PubMed  Google Scholar 

  • Pardridge WM (2003) Blood-brain barrier drug targeting: the future of brain drug development. Mol Interv 3:90–105, 151

    Article  CAS  PubMed  Google Scholar 

  • Pendlebury ST, Rothwell PM (2009) Prevalence, incidence, and factors associated with pre-stroke and post-stroke dementia: a systematic review and meta-analysis. Lancet Neurol 8:1006–1018

    Article  PubMed  Google Scholar 

  • Postina R, Schroeder A, Dewachter I, Bohl J, Schmitt U, Kojro E, Prinzen C, Endres K, Hiemke C, Blessing M, Flamez P, Dequenne A, Godaux E, Van LF, Fahrenholz F (2004) A disintegrin-metalloproteinase prevents amyloid plaque formation and hippocampal defects in an Alzheimer’s disease mouse model. J Clin Investig 113(10):1456–1464

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Prince M, Jackson J (2009) Alzheimer’s disease-international world Alzheimer report. London, pp 1–96

    Google Scholar 

  • Reger MA, Watson GS, Green PS, Wilkinson CW, Baker LD, Cholerton B, Fishel MA, Plymate SR, Breitner JC, DeGroodt W (2008) Intranasal insulin improves cognition and modulates b-amyloid in early AD. Neurology 70:440–448

    Article  CAS  PubMed  Google Scholar 

  • Reiman EM, Quiroz YT, Fleisher AS, Chen K, Velez-Pardos C, Jimenez-Del-Rio M (2012) Brain imaging and fluid biomarker analysis in young adults at genetic risk for autosomal dominant Alzheimer’s disease in the presenilin 1 E280A kindred: a case-control study. Lancet Neurol 11(2):1048–1056

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Roberson ED, Mucke L (2006) 100 years and counting: prospects for defeating Alzheimer’s disease. Science 314(5800):781–784

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Robert R, Wark KL (2012) Engineered antibody approaches for Alzheimer’s disease immunotherapy. Arch Biochem Biophys 526:132–138

    Article  CAS  PubMed  Google Scholar 

  • Roberts R, Knopman DS (2013) Classification and epidemiology of MCI. Clin Geriat Med 29(4):753–772

    Article  Google Scholar 

  • Robinson M (2015) Drugs and drug delivery systems targeting amyloid-β in Alzheimer’s disease. AIMS Mol Sci 2(3):332–358

    Article  CAS  Google Scholar 

  • Rosales CSA, Lopez AG, Cruz RJ, Melnikov VG, Tan DX, Manchester LC, Munoz R, Reiter RJ (2012) Alterations in lipid levels of mitochondrial membranes induced by amyloid-β: a protective role of melatonin. Int J Alzheimers Dis 2012:459806

    Google Scholar 

  • Rossor MN, Emson PC, Mountjoy CQ, Roth M, Iversen LL (1980) Reduced amounts of immune-reactive somatostatin in the temporal cortex in senile dementia of Alzheimer type. Neurosci Lett 20(3):373–377

    Article  CAS  PubMed  Google Scholar 

  • Rottkamp CA, Nunomura A, Raina AK, Sayre LM, Perry G, Smith MA (2000) Oxidative stress, antioxidants, and Alzheimer disease. Alzheimer Dis Assoc Disord 14(Suppl 1):S62–S66

    Article  CAS  PubMed  Google Scholar 

  • Rubin LL, Staddon JM (1999) The cell biology of the blood–brain barrier. Annu Rev Neurosci 22:11–28

    Article  CAS  PubMed  Google Scholar 

  • Sahni JK (2011) Neurotherapeutic applications of nanoparticles in Alzheimer’s disease. J Control Release 152:208–231

    Article  CAS  PubMed  Google Scholar 

  • Saraiva C, Catarina P, Ferreira R, Santos T, Ferreira L, Bernardino L (2016) Nanoparticle-mediated brain drug delivery; overcoming blood-brain barrier to treat neurodegenerative diseases. J Control Release 3659(16):30323–30326

    Google Scholar 

  • Schipper HM, Bennett DA, Liberman A, Bienias JL, Schneider JA, Kelly J, Arvanitakis Z (2006) Glial heme oxygenase-1 expression in Alzheimer disease and mild cognitive impairment. Neurobiology 27(2):252–261

    CAS  Google Scholar 

  • Shumaker SA, Legault C, Rapp SR, Thal L, Wallace RB, Ockene JK, Hendrix SL, Jones BN, Assaf AR, Jackson RD, Kotchen JM, Wassertheil SS, Wactawski WJ (2003) Estrogen plus progestin and the incidence of dementia and mild cognitive impairment in postmenopausal women: the Women’s Health Initiative Memory Study: a randomized controlled trial. J Am Med Assoc 289(20):2651–2662

    Article  CAS  Google Scholar 

  • Singh M, Arseneault M, Sanderson T, Murthy V, Ramassamy C (2008) Challenges for research on polyphenols from foods in Alzheimer’s disease: bioavailability, metabolism and cellular and molecular mechanisms. J Agric Foods Chem 56(13):4855–4873

    Article  CAS  Google Scholar 

  • Smith C, Graham DI, Murray LS, Nicoll JA (2003) Tau immune histochemistry in acute brain injury. Neuropathol Appl Neurobiol 29:496–502

    Article  CAS  PubMed  Google Scholar 

  • Soininen H, Kosunen O, Helisalmi S (1995) A severe loss of choline acetyltransferase in the frontal cortex of Alzheimer patients carrying apolipoprotein epsilon 4 allele. Neurosci Lett 187(2):79–82

    Article  CAS  PubMed  Google Scholar 

  • Sonvico F, Clementino A, Buttini F, Colombo G, Pescina S, Guterres SS, Pohlmann AR, Nicoli S (2018) Surface-modified nanocarriers for nose-to-brain delivery: from bioadhesion to targeting. Pharmaceutics 10:34

    Article  PubMed Central  CAS  Google Scholar 

  • Soroor SM, Amir A, Zhila I, Masoume K (2019) Brain delivery of using solid lipid nanoparticles and nanostructured lipid carriers: preparation, optimization, and pharmacokinetic evaluation. ACS Chem Neurosci 10(1):728–739

    Article  CAS  Google Scholar 

  • Sperling RA, Aisen PS, Beckett LA, Bennett DA, Craft S, Fagan AM (2011) Toward defining the preclinical stages of Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement 7(3):280–292

    Article  PubMed  PubMed Central  Google Scholar 

  • Spinney L (2014) Alzheimer’s disease: the forgetting gene. Nature 510(7503):26–28

    Article  CAS  PubMed  Google Scholar 

  • Stelzmann RA, Schnitzlein HN, Murtagh FR (1995) An English translation of Alzheimer’ paper “Uber eineeigenartige Erkankung der Hirnrinde”. Clin Anat 8:429–431

    Article  PubMed  Google Scholar 

  • Sweeney MD (2018) Blood–brain barrier breakdown in Alzheimer disease and other neurodegenerative disorders. Nat Rev Neurol 14:133

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thinakaran G, Koo EH (2008) Amyloid precursor protein trafficking, processing and function. J Biol Chem 283:29615–29619

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tjernberg LO, Naslund J, Lindqvist F (1996) Arrest of beta-amyloid fibril formation by a pentapeptide ligand. J Biol Chem 271:8545–8548

    Article  CAS  PubMed  Google Scholar 

  • Torre DL, Ceña V (2018) The delivery challenge in neurodegenerative disorders: the nanoparticles role in Alzheimer’s disease therapeutics and diagnostics. Pharmaceutics 10:190

    Article  PubMed Central  CAS  Google Scholar 

  • Vakilinezhad MA, Amini A, Akbari JH (2018) Nicotinamide loaded functionalized solid lipid nanoparticles improves cognition in Alzheimer’s disease animal model by reducing Tau hyperphosphorylation. Daru 26(2):165–177

    Article  PubMed  PubMed Central  Google Scholar 

  • Vassar R (2004) BACE1: the beta-secretase enzyme in Alzheimer’s disease. J Mol Neurosci 23:105–114

    Article  CAS  PubMed  Google Scholar 

  • Vedagiri A, Thangarajan S (2016) Mitigating effect of chrysin loaded solid lipid nanoparticles against amyloid β25–35 induced oxidative stress in rat hippocampal region: an efficient formulation approach for Alzheimer’s disease. Neuropeptides 58:111–125

    Article  CAS  PubMed  Google Scholar 

  • Villemagne VL, Burnham S, Bourgeat P, Brown B, Ellis KA, Salvado O (2013) Amyloid ß deposition, neurodegeneration, and cognitive decline in sporadic Alzheimer’s disease: a prospective cohort study. Lancet Neurol 12(4):357–367

    Article  CAS  PubMed  Google Scholar 

  • Waldstein SR, Giggey PP, Thayer JF, Zonderman AB (2005) Nonlinear relations of blood pressure to cognitive function: the Baltimore Longitudinal Study of Aging. Hypertension 45:374–379

    Article  CAS  PubMed  Google Scholar 

  • Wang XC, Zhang J, Yu X, Han L, Zhou ZT, Zhang Y, Wang JZ (2005) Prevention of isoproterenol-induced tau hyperphosphorylation by melatonin in the rat. Sheng Li Xue Bao 57:7–12

    CAS  PubMed  Google Scholar 

  • Watson GS, Cholerton BA, Reger MA, Baker LD, Plymate SR, Asthana S, Fishel MA, Kulstad JJ, Green PS, Cook DG (2005) Preserved cognition in patients with early Alzheimer disease and amnestic mild cognitive impairment during treatment with rosiglitazone: a preliminary study. Am J Geriatr Psychiatry 13:950–958

    PubMed  Google Scholar 

  • Weingarten MD, Lockwood AH, Hwo SY, Kirschner MW (1975) A protein factor essential for microtubule assembly. Proc Natl Acad Sci U S A 72:1858–1862

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Weinreb O, Amit T, Bar AO, Youdim MB (2012) Ladostigil: a novel multimodal neuroprotective drug with cholinesterase and brain-selective monoamine oxidase inhibitory activities for Alzheimer’s disease treatment. Curr Drug Targets 13(4):483–494

    Article  CAS  PubMed  Google Scholar 

  • World Health Organization (2008) WHO Mental Health Gap Action Programme (mhGAP). http://www.who.int/mental_health/mhgap/en/

  • Wu YH, Swaab DF (2005) The human pineal gland and melatonin in aging and Alzheimer’s disease. J Pineal Res 38(3):145–152

    Article  CAS  PubMed  Google Scholar 

  • Xu JP, Zhao J, Li S (2011) Roles of NG2 glial cells in diseases of the central nervous system. Neurosci Bull 27:413–421

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang F, Lim GP, Begum AN, Ubeda OJ, Simmons MR, Ambegaokar SS, Chen PP, Kayed R, Glabe CG, Frautschy SA, Cole GM (2005) Curcumin inhibits formation of amyloid beta oligomers and fibrils, binds plaques, and reduces amyloid in vivo. J Biol Chem 280(7):5892–5901

    Article  CAS  PubMed  Google Scholar 

  • Yang HQ, Sun ZK, Ba MW, Xu J, Xing Y (2009) Involvement of protein trafficking in deprenyl-induced α-secretase activity regulation in PC12 cells. Eur J Pharmacol 610(1–2):37–41

    Article  CAS  PubMed  Google Scholar 

  • Yaseen AA, Al-Okbi S, Hussein AMS, Mohamed DA, Mohammad AA, Fouda KA, Mehaya FM (2018) Potential protection from Alzheimer’s disease by wheat germ and rice bran nano-form in rat model. J App Pharm Sci 9(S1):067–076

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Talegaonkar, S., Gautam, N., Varshney, V., Sharma, S.K., Bhattacharyya, A. (2019). Nanolipidic Carriers as Potential Drug Delivery Vehicles in Alzheimer’s Disease. In: Rai, M., Yadav, A. (eds) Nanobiotechnology in Neurodegenerative Diseases. Springer, Cham. https://doi.org/10.1007/978-3-030-30930-5_13

Download citation

Publish with us

Policies and ethics