Skip to main content

Potential of PGPR in Improvement of Environmental-Friendly Vegetable Production

  • Chapter
  • First Online:
Field Crops: Sustainable Management by PGPR

Part of the book series: Sustainable Development and Biodiversity ((SDEB,volume 23))

Abstract

Plant growth promoting rhizobacteria (PGPR) can directly cause enhanced plant growth, early seed emergence or improvement in crop yields by supplying biologically fixed nitrogen and increasing minerals uptake, producing and secreting plant growth regulators and other beneficial substances. Also, PGPR indirectly influences the plant growth promotion by suppressing of pest and diseases in vegetables. Hence, replacement of chemical fertilizers and pesticides is required because of the adverse effect of these chemicals and their residues seriously pollute the environment, impart and also threaten the health of human and animals. Thus, people are focused on healthy products not only for growing vegetables but also for all agricultural products. In recent years because of increasing food-borne illnesses, the importance and potential of PGPR is hereby discussed for improvement of sustainable environment-friendly vegetable production for healthy human nutrition with special reference selected vegetable species, such as tomato, pepper, melon, radish and lettuce.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abbas JA (2009) The effect of nitrogenous and phosphate fertilizers of the properties on the vegetative growth and aromatical oil yield of local mint (Mentha spicata L.). Am-Eurasian J Sustain Agric 3:262–265

    Google Scholar 

  • Abd El-Azeem SA, Elwan MW, Sung JK, Ok YS (2012) Alleviation of salt stress in eggplant (Solanum melongena L.) by plant-growth-promoting rhizobacteria. Comm Soil Sci Plant Anal 43:1303–1315. https://doi.org/10.1080/00103624.2012.666305

    Article  CAS  Google Scholar 

  • Abraham-Juárez MDR, Vázquez IE, Mendoza RG et al (2018) Development, yield, and quality of melon fruit (Cucumis melo L.) inoculated with mexican native strains of Bacillus subtilis (ehrenberg). Agrociencia 52:91–102

    Google Scholar 

  • Aeron A, Pandey P, Maheshwari DK (2010) Differential response of sesame under influence of indigenous and non-indigenous rhizosphere competent fluorescent pseudomonads. Curr Sci 99(2):166–168

    Google Scholar 

  • Adhikari M, Yadav DR, Kim SW et al (2017) Biological control of bacterial fruit blotch of watermelon pathogen (Acidovorax citrulli) with rhizosphere associated bacteria. Plant Pathol 33:170. https://doi.org/10.5423/PPJ.OA.09.2016.0187

    Article  CAS  Google Scholar 

  • Ahmad I, Akhtar MJ, Mehmood S et al (2018) Combined application of compost and Bacillus sp. CIK-512 ameliorated the lead toxicity in radish by regulating the homeostasis of antioxidants and lead. Ecotoxicol Environ Safe 148:805–812. https://doi.org/10.1016/j.ecoenv.2017.11.054

    Article  CAS  Google Scholar 

  • Akhtar MJ, Ullah S, Ahmad I et al (2018) Nickel phytoextraction through bacterial inoculation in Raphanus sativus. Chemosphere 190:234–242. https://doi.org/10.1016/j.chemosphere.2017.09.136

    Article  CAS  PubMed  Google Scholar 

  • Akram W, Anjum T, Ali B (2015) Co-cultivation of tomato with two Bacillus strains: effects on growth and yield. J Anim Plant Sci 25:1644–1651

    CAS  Google Scholar 

  • Altinok HH, Dikilitas M, Yildiz HN (2013) Potential of Pseudomonas and Bacillus isolates as biocontrol agents against fusarium wilt of eggplant. Biotechnol Biotechnol Equip 27:3952–3958. https://doi.org/10.5504/BBEQ.2013.0047

    Article  CAS  Google Scholar 

  • Altuntaş O (2018) A comparative study on the effects of different conventional, organic and bio-fertilizers on broccoli yield and quality. Appl Ecol Env Res 16:1595–1608. https://doi.org/10.15666/aeer/1602_15951608

    Article  Google Scholar 

  • Anith KN, Sreekumar A, Sreekumar J (2015) The growth of tomato seedlings inoculated with co-cultivated Piriformospora indica and Bacillus pumilus. Symbiosis 65:9–16. https://doi.org/10.1007/s13199-015-0313-7

  • Almaghrabi OA, Massoud SI, Abdelmoneim TS (2013) Influence of inoculation with plant growth promoting rhizobacteria (PGPR) on tomato plant growth and nematode reproduction under greenhouse conditions. Saudi J Biol Sci 20:57–61. https://doi.org/10.1016/j.sjbs.2012.10.004

    Article  PubMed  Google Scholar 

  • Aslam H, Ahmad SR, Anjum T, Akram W (2018) Native halotolerant plant growth promoting bacterial strains can ameliorate salinity stress on tomato plants under field conditions. Int J Agric Biol 20:315–322. https://doi.org/10.17957/IJAB/15.0491

  • Balkaya A, Karaağaç O (2006) Vegetable genetic resources of Turkey. J Veg Sci 11:81–102. https://doi.org/10.1300/J484v11n04_08

    Article  Google Scholar 

  • Bergougnoux V (2014) The history of tomato: from domestication to biopharming. Biotechnol Adv 32:170–189. https://doi.org/10.1016/j.biotechadv.2013.11.003

    Article  CAS  PubMed  Google Scholar 

  • Bharti N, Barnawal D, Awasthi A, Yadav A, Kalra A (2014) Plant growth promoting rhizobacteria alleviate salinity induced negative effects on growth, oil content and physiological status in Mentha arvensis. Acta Physiol Plant 36:45–60. https://doi.org/10.1007/s11738-013-1385-8

    Article  CAS  Google Scholar 

  • Bhardwaj S, Dipta B, Kirti S, Kaushal R (2017) Screening of efficient rhizobacteria associated with cauliflower (Brassica oleracea var. botrytis L.) for plant growth promoting traits J Appl Nat Sci 9:167–172

    Google Scholar 

  • Blinkov EA, Tsavkelova EA, Selitskaya OV (2014) Auxin production by the Klebsiella planticola Strain TSKhA-91 and its effect on development of cucumber (Cucumis sativus L.) seeds. Microbiology 83:531–538. https://doi.org/10.1134/S0026261714050063

    Article  CAS  Google Scholar 

  • Boukerma L, Benchabane M, Charif A, Khélifi L (2017) Activity of Plant Growth Promoting Rhizobacteria (PGPRs) in the Biocontrol of Tomato Fusarium Wilt. Plant Protect Sci 53:78–84. https://doi.org/10.17221/178/2015-PPS

  • Brutti L, Alvarado P, Rojas T, Martensson A (2015) Tomato seedling development is improved by a substrate inoculated with a combination of rhizobacteria and fungi. Acta Agric Scand B Soil Plant Sci 65:170–176. https://doi.org/10.1080/09064710.2014.977338

    Article  CAS  Google Scholar 

  • Calvo-Polanco M, Sánchez-Romera B, Aroca R, Asins MJ, Declerck S, Dodd IC, Martínez-Andújare C, Albacete A, Ruiz-Lozano JM (2016) Exploring the use of recombinant inbred lines in combination with beneficial microbial inoculants (AM fungus and PGPR) to improve drought stress tolerance in tomato. Environ Exp Bot 131:47–57. https://doi.org/10.1016/j.envexpbot.2016.06.015

    Article  CAS  Google Scholar 

  • Chabot R, Antoun H, Cescas MP (1996) Growth promotion of maize and lettuce by phosphate-solubilizing Rhizobium leguminosarum biovar. phaseoli. Plant Soil 184:311–321. https://doi.org/10.1007/BF00010460

    Article  CAS  Google Scholar 

  • Chen C,  Belanger RR,  Benhamou N,  Paulitz TC  (2000) Defense enzymes induced in cucumber roots by treatment with plant growth-promoting rhizobacteria (PGPR) and Pythium aphanidermatum. Physiol Mol Plant Pathol 56:13–23. https://doi.org/10.1006/pmpp.1999.0243

  • Chamangasht S, Ardakani MR, Khavazi K, Abbaszadeh B, Mafakheri S (2012) Improving lettuce (Lactuca sativa L.) growth and yield by the application of biofertilizers. Ann Biol Res 3:1876–1879

    Google Scholar 

  • Chen F, Wang M, Zheng Y, Luo J, Yang X, Wang X (2010) Quantitative changes of plant defense enzymes and phytohormone in biocontrol of cucumber Fusarium wilt by Bacillus subtilis B579. World J Microbiol Biotechnol 26:675–684. https://doi.org/10.1007/s11274-009-0222-0

    Article  CAS  Google Scholar 

  • Chiquito-Contreras RG, Murillo-Amador B, Chiquito-Contreras CJ, Marquez-Martinez JC, Cordoba-Matson MV, Hernandez-Montiel LG (2017) Effect of Pseudomonas putida and inorganic fertilizer on growth and productivity of habanero pepper (Capsicum Chinense Jacq.) in greenhouse. J Plant Nutr 40:2595–2601. https://doi.org/10.1080/01904167.2017.1381119

    Article  CAS  Google Scholar 

  • Chung H, Park M, Madhaiyan M, Seshadri S, Song J, Cho H, Sa T (2005) Isolation and characterization of phosphate solubilizing bacteria from the rhizosphere of crop plants of Korea. Soil Biol Biochem 37:1970–1974. https://doi.org/10.1016/j.soilbio.2005.02.025

    Article  CAS  Google Scholar 

  • Cappellari LD, Santoro MV, Reinoso H, Travaglia C, Giordano W, Banchio E (2015) Anatomical, morphological, and phytochemical effects of ınoculation with plant growth- promoting rhizobacteria on peppermint (Mentha piperita). J Chem Ecol 41:149–158. https://doi.org/10.1007/s10886-015-0549-y

    Article  CAS  Google Scholar 

  • Cappellari LDR, Chiappero J, Santoro MV, Giordano W, Banchio E (2017) Inducing phenolic production and volatile organic compounds emission by inoculating Mentha piperita with plant growth-promoting rhizobacteria. Sci Hortic 220:193–198. https://doi.org/10.1016/j.scienta.2017.04.002

    Article  CAS  Google Scholar 

  • Çakmakçı R, Erat M, Erdoğan Ü, Dönmez MF (2007) The influence of plant growth–promoting rhizobacteria on growth and enzyme activities in wheat and spinach plants. J Plant Nutr Soil Sci 170:288–295. https://doi.org/10.1002/jpln.200625105

    Article  CAS  Google Scholar 

  • de Boer M, Bom P, Kindt F, Keurentjes JJ, van der Sluis I, Van Loon LC, Bakker PAHM (2003) Control of Fusarium wilt of radish by combining Pseudomonas putida strains that have different disease-suppressive mechanisms. Phytopathol 93:626–632. https://doi.org/10.1094/phyto.2003.93.5.626

  • Decoteau RD (2000) Vegetable crops. Prentice-Hall Inc., Upper Saddle River, New Jersey

    Google Scholar 

  • Devi M, Upadhyay GP, Garima SR (2017) Biological properties of soil and nutrient uptake in cauliflower (Brassica oleracea var botrytis L.) as influenced by integrated nutrient management. J Pharmacog Phytochem 6:325–328

    CAS  Google Scholar 

  • Dipta B, Kirti S, Bhardwaj S, Gupta S, Kaushal R (2017) Phosphate solubilizing potential of Bacillus pumilus for the enhancement of Cauliflower (Brassica oleracea var. botrytis L.). Ecol Environ Cons 23:1541–1548

    Google Scholar 

  • Du N, Shi L, Yuan Y, Li B, Shu S, Sun J, Guo S (2016) Proteomic analysis reveals the positive roles of the plant-growth-promoting rhizobacterium NSY50 in the response of cucumber roots to Fusarium oxysporum f. sp. cucumerinum inoculation. Front Plant Sci 7:1859. https://doi.org/10.3389/fpls.2016.01859

  • Ebstam MM, Nadia AM (2013) Efficincy of Bacillus subtilis and Pseudomonas fluorescence as biocontrol agents against rhizoctonia solanı on spearmint plants (Mentha viridis L.). Sci J Flower Ornamen Plant 2:213–225. https://doi.org/10.21608/SJFOP.2015.5114

    Article  Google Scholar 

  • Ekinci M, Turan M, Yildirim E, Güneş A, Kotan R, Dursun A (2014) Effect of plant growth promoting rhizobacteria on growth, nutrient, organic acid, amino acid and hormone content of cauliflower (Brassica oleracea L. var. botrytis) transplants. Acta Sci Pol-Hortorum Cultus 13:71–85

    Google Scholar 

  • El-Nemr MA, Zaki MF, Tantawy AS, Abdel-Mawgoud AMR (2011) Enhancement of growth and production of broccoli crop using bio-nutritional foliar compound. Australian J Basic Appl Sci 5:2578–2583

    Google Scholar 

  • Esquivel-Cote R, Ramírez-Gama RM, Tsuzuki-Reyes G, Orozco-Segovia A, Huante P (2010) Azospirillum lipoferum strain AZm5 containing 1-aminocyclopropane-1-carboxylic acid deaminase improves early growth of tomato seedlings under nitrogen deficiency. Plant Soil 337:65–75. https://doi.org/10.1007/s11104-010-0499-7

  • Fan X, Zhang S, Xiaodan MO, Yuncong LI, Yuqing FU, Zhiguang LIU (2017) Effects of plant growth-promoting rhizobacteria and N source on plant growth and N and P uptake by tomato grown on calcareous soils. Pedosphere 27:1027–1036. https://doi.org/10.1016/S1002-0160(17)60379-5

  • FAOSTAT (2018) Online database of crop production statistics. Available via DIALOG. http://www.fao.org/faostat/en/#data/QC. Accessed 25 June 2018

  • Fasciglione G, Casanovas EM, Yommi A, Sueldo RJ, Barassi CA (2012) Azospirillum improves lettuce growth and transplant under saline conditions. J Sci Food Agric 92:2518–2523. https://doi.org/10.1002/jsfa.5661

    Article  CAS  PubMed  Google Scholar 

  • Fatima S, Anjum T (2017) Identification of a potential ISR determinant from Pseudomonas aeruginosa PM12 against Fusarium wilt in tomato. Front Plant Sci 8:848. https://doi.org/10.3389/fpls.2017.00848

    Article  PubMed  PubMed Central  Google Scholar 

  • Flores-Félix JD, Menéndez E, Rivera LP et al (2013) Use of Rhizobium leguminosarum as a potential biofertilizer for Lactuca sativa and Daucus carota crops. J Plant Nutr Soil Sci 176:876–882. https://doi.org/10.1002/jpln.201300116

    Article  CAS  Google Scholar 

  • Folman LB, Postma J, van Veen JA (2003) Characterisation of Lysobacter enzymogenes (Christensen and Cook 1978) strain 3.1 T8, a powerful antagonist of fungal diseases of cucumber. Microbiol Res 158(2):107

    Google Scholar 

  • Gadhave KR, Finch P, Gibson TM, Gange AC (2016) Plant growth-promoting Bacillus suppress Brevicoryne brassicae field infestation and trigger density-dependent and density-independent natural enemy responses. J Pest Sci 89:985–992. https://doi.org/10.1007/s10340-015-0721-8

    Article  Google Scholar 

  • García-Gutiérrez L, Romero D, Zeriouh H, Cazorla FM, Torés JA, de Vicente A, Pérez-García A (2012) Isolation and selection of plant growth-promoting rhizobacteria as inducers of systemic resistance in melon. Plant Soil 358:201–212. https://doi.org/10.1007/s11104-012-1173-z

    Article  CAS  Google Scholar 

  • Gao M, Zhou JJ, Wang ET, Chen Q, Xu J, Sun JG (2015) Multiphasic characterization of a plant growth promoting bacterial strain, Burkholderia sp. 7016 and its effect on tomato growth in the field. J Integr Agric 14:1855–1863. https://doi.org/10.1016/S2095-3119(14)60932-1

  • García-Gutiérrez L, Zeriouh H, Romero D, Cubero J, de Vicente A, Pérez-García A (2013) The antagonistic strain Bacillus subtilis UMAF6639 also confers protection to melon plants against cucurbit powdery mildew by activation of jasmonate-and salicylic acid-dependent defence responses. Microb Biotechnol 6:264–274. https://doi.org/10.1111/1751-7915.12028

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Garcia JAL, Probanza A, Ramos B, Palomino MR, Manero FJG (2004) Effect of inoculation of Bacillus licheniformis on tomato and pepper. Agronomie 24(169–176):169. https://doi.org/10.1051/agro:2004020

    Article  Google Scholar 

  • Gravel V, Antoun H, Tweddell RJ (2007) Growth stimulation and fruit yield improvement of greenhouse tomato plants by inoculation with Pseudomonas putida or Trichoderma atroviride: possible role of indole acetic acid (IAA). Soil Biol Biochem 39:1968–1977. https://doi.org/10.1016/j.soilbio.2007.02.015

  • Gyaneshwar P, Naresh Kumar G, Parekh LJ, Poole PS (2002) Role soil microorganisms in improving P nutrition of plant. Plant Soil 245:83–93

    Article  CAS  Google Scholar 

  • Gowtham HG, Duraivadivel P, Hariprasad P, Niranjana SR (2017) A novel split-pot bioassay to screen indole acetic acid producing rhizobacteria for the improvement of plant growth in tomato (Solarium lycopersicum L.). Sci Hortic 224:351–357. https://doi.org/10.1016/j.scienta.2017.06.017

    Article  CAS  Google Scholar 

  • Hahm MS, Son JS, Hwang YJ, Kwon DK, Ghim SY (2017) Alleviation of salt stress in pepper (Capsicum annum L.) plants by plant growth-promoting rhizobacteria. J Microbiol Biotechnol 27:1790–1797. https://doi.org/10.4014/jmb.1609.09042

    Article  CAS  PubMed  Google Scholar 

  • Hahm MS, Sumayo M, Hwang YJ, Jeon SA, Park SJ, Lee JY, Ahn JH, Kim BS, Ryu CM, Ghim SY (2012) Biological control and plant growth promoting capacity of rhizobacteria on pepper under greenhouse and field conditions. J Microbiol 50:380–385. https://doi.org/10.1007/s12275-012-1477-y

    Article  PubMed  Google Scholar 

  • Hameeda B, Harini G, Rupela OP, Wani SP, Reddy G (2008) Growth promotion of maize by phosphate solubilizing bacteria isolated from composts and macrofauna. Microbiol Res 163:234–242. https://doi.org/10.1016/j.micres.2006.05.009

    Article  CAS  PubMed  Google Scholar 

  • Hernández-Montiel LG, Chiquito Contreras CJ, Murillo Amador B, Vidal Hernández L, Aguilar Q, Evanjelina E, Chiquito Contreras RG (2017) Efficiency of two inoculation methods of Pseudomonas putida on growth and yield of tomato plants. J Soil Sci Plant Nutr 17:1003–1012. https://doi.org/10.4067/S0718-95162017000400012

    Article  Google Scholar 

  • Herman MAB, Nault BA, Smart CD (2008) Effects of plant growth-promoting rhizobacteria on bell pepper production and green peach aphid infestations in New York. Crop Protec 27:996–1002. https://doi.org/10.1016/j.cropro.2007.12.004

    Article  Google Scholar 

  • Hernandez-Castillo FD, Lira-Saldivar RH, Gallegos-Morales G, Hernandez-Suarez M, Solis-Gaona S (2014) Biocontrol of pepper wilt with three Bacillus species and its effect on growth and yield. Phyton-Int J Exp Bot 83:49–55

    Google Scholar 

  • Hoffmann-Hergarten S, Gulati MK, Sikora RA (1998) Yield response and biological control of Meloidogyne incognita on lettuce and tomato with rhizobacteria. J Plant Dis Protec 105:349–358

    Google Scholar 

  • Hong SH, Lee EY (2017) Phytostabilization of salt accumulated soil using plant and biofertilizers: field application. Int Biodeterior Biodegr 124:188–195. https://doi.org/10.1016/j.ibiod.2017.05.001

    Article  CAS  Google Scholar 

  • Hou MP, Oluranti BO (2013) Evaluation of plant growth promoting potential of four rhizobacterial species for indigenous system. J Cent South Univ 20:164–171. https://doi.org/10.1007/s11771-013-1472-4

    Article  CAS  Google Scholar 

  • Huang YY, Wu ZS, He YH, Ye BC, Li C (2017) Rhizospheric bacillus subtilis exhibits biocontrol effect against rhizoctonia solani in pepper (Capsicum annuum). Hindawi BioMed Research International Article ID: 9397619. https://doi.org/10.1155/2017/9397619

  • Islam MR, Sultana T, Joe MM, Yim W, Cho JC, Sa T (2013) Nitrogen‐fixing bacteria with multiple plant growth‐promoting activities enhance growth of tomato and red pepper. J Basic Microbiol 53:1004–1015. https://doi.org/10.1002/jobm.201200141

  • Islam MR, Sultana T, Joe MM, Yim W, Cho JC, Sa T (2013b) Nitrogen-fixing bacteria with multiple plant growth-promoting activities enhance growth of tomato and red pepper. J Basic Microbiol 53:1004–1015. https://doi.org/10.1002/jobm.201200141

    Article  CAS  PubMed  Google Scholar 

  • Jeffrey C (2007) Compositae. Introduction with key to tribes. In: Kadereit JW, Jeffrey C (eds) Families and genera of vascular Plants, flowering plants Asterales. Springer-Verlag, Eudicots, pp 61–87

    Google Scholar 

  • Jeun YC, Park KS, Kim CH, Fowler WD, Kloepper JW (2004) Cytological observations of cucumber plants during induced resistance elicited by rhizobacteria. Biol Cont 29:34–42. https://doi.org/10.1016/S1049-9644(03)00082-3

    Article  Google Scholar 

  • Jeun YC, Kim KW, Kim KD, Hyun JW (2007) Comparative ultrastructure of cucumbers pretreated with plant growth-promoting rhizobacteria, dl-3-aminobutyric acid or amino salicylic acid after inoculation with Colletotrichum orbiculare. J Phytopathol 155:416–425. https://doi.org/10.1111/j.1439-0434.2007.01252.x

    Article  CAS  Google Scholar 

  • Jiménez-Gómez A, Flores-Félix JD, García-Fraile P, Mateos PF, Menéndez E, Velázquez E, Rivas R (2018) Probiotic activities of Rhizobium laguerreae on growth and quality of spinach. Scintific Rep 8:295. https://doi.org/10.1038/s41598-017-18632-z

    Article  CAS  Google Scholar 

  • Jung BK, Kim SD, Khan AR, Lim JH, An CH, Kim YH, Song JH, Hong SJ, Shin JH (2015) Rhizobacterial Communities and red pepper (Capsicum annum) yield under different cropping systems. Int J Agric Biol 17:734–740. https://doi.org/10.17957/IJAB/14.0010

    Article  CAS  Google Scholar 

  • Kang SM, Hamayun M, Joo GJ et al (2010) Effect of Burkholderia sp. KCTC 11096BP on some physiochemical attributes of cucumber. Eur J Soil Biol 46:264–268. https://doi.org/10.1016/j.ejsobi.2010.03.002

    Article  CAS  Google Scholar 

  • Kang SM, Khan AL, Waqas M et al (2014a) Plant growth-promoting rhizobacteria reduce adverse effects of salinity and osmotic stress by regulating phytohormones and antioxidants in Cucumis sativus. J Plant Interact 9:673–682. https://doi.org/10.1080/17429145.2014.894587

    Article  CAS  Google Scholar 

  • Kang SM, Khan AL, You YH, Kim JG, Kamran M, Lee IJ (2014b) Gibberellin production by newly isolated strain Leifsonia soli SE134 and its potential to promote plant growth. J Microbiol Biotechnol 24:106–112. https://doi.org/10.4014/jmb.1304.04015

    Article  CAS  PubMed  Google Scholar 

  • Kang SM, Radhakrishnan R, You YH, Khan AL, Park JM, Lee SM, Lee IJ (2015) Cucumber performance is improved by inoculation with plant growth-promoting microorganisms. Acta Agric Scand B Soil Plant Sci 65:36–44. https://doi.org/10.1080/09064710.2014.960889

    Article  CAS  Google Scholar 

  • Khabbaz SE, Zhang L, Cáceres LA, Sumarah M, Wang A, Abbasi PA (2015) Characterisation of antagonistic Bacillus and Pseudomonas strains for biocontrol potential and suppression of damping‐off and root rot diseases. Ann Appl Biol 166:456–471. https://doi.org/10.1111/aab.12196

  • Khan FM, Inamul H, Tariq S, Muhammad F, Ohia CM, Tauseef A (2018) Isolation, characterization and ıdentification of plant growth promoting rhizobacteria from cauliflower (Brassica oleracea). Arch Bas App Med 6:55–60

    Google Scholar 

  • Kloepper JW, Schroth MN (1978) Plant growth-promoting rhizobacteria on radishes. In: Proceedings of the Fourth International Conference on Plant Pathogen Bacteria, vol 2. INRA, p 879–882

    Google Scholar 

  • Kaymak HÇ, Güvenç İ, Yarali F, Dönmez MF (2009) The effects of bio-priming with PGPR on germination of radish (Raphanus sativus L.) seeds under saline conditions. Turk J Agric For 33:173–179. https://doi.org/10.3906/tar-0806-30

    Article  CAS  Google Scholar 

  • Kaymak HC, Güvenç İ (2010) The influence of vernalization time and day length on flower induction of radish (Raphanus sativus L.) under controlled and field conditions. Turk J Agric For 34:401–413. https://doi.org/10.3906/tar-0901-14

    Article  Google Scholar 

  • Kaymak HC (2010) Potential of PGPR in agricultural innovations. In: Maheshwari DK (ed) Plant growth and health promoting bacteria. Springer, Berlin, Heidelberg, pp 45–79

    Chapter  Google Scholar 

  • Kaymak HC, Dönmez MF, Çakmakçı R (2013) N2-fixing plant growth promoting rhizobacteria: as a potential application to increase yield, growth and element contents of leaves in Mentha piperita L. Euro J Plant Sci Biotechnol “Vegetable Science and Biotechnology in Turkey”, 7 (Special Issue 1):38–42

    Google Scholar 

  • Kaushal M, Kaushal R, Thakur BS, Spehia RS (2011) Effect of plant growth-promoting rhizobacteria at varying levels of N and P fertilizers on growth and yield of cauliflower in mid hills of Himachal Pradesh. J Farm Sci 1:19–26

    Google Scholar 

  • Kaushal M, Kaushal R, Mandyal P (2013) Impact of integrated nutrient management systems on cauliflower (Brassica oleracea var botrytis) yield and soil nutrient status. Indian J Agr Sci 83:1013–1016

    Google Scholar 

  • Koh RH, Song HG (2007) Effects of application of Rhodopseudomonas sp. on seed germination and growth of tomato under axenic conditions. J Microbiol Biotechnol 17:1805–1810

    CAS  PubMed  Google Scholar 

  • Kohler J, Caravaca F, Carrasco L, Roldán A (2006) Contribution of Pseudomonas mendocina and Glomus intraradices to aggregate stabilization and promotion of biological fertility in rhizosphere soil of lettuce plants under field conditions. Soil Use Manag 22:298–304. https://doi.org/10.1111/j.1475-2743.2006.00041.x

    Article  Google Scholar 

  • Kokalis-Burelle N, Vavrina CS, Rosskopf EN, Shelby RA (2002) Field evaluation of plant growth-promoting Rhizobacteria amended transplant mixes and soil solarization for tomato and pepper production in Florida. Plant Soil 238:257–266

    Article  CAS  Google Scholar 

  • Kokalis-Burelle N, Vavrina CS, Reddy MS, Kloepper JW (2003) Amendment of muskmelon and watermelon transplant media with plant growth-promoting rhizobacteria: effects on seedling quality, disease, and nematode resistance. Horttechnology 13:476–482

    Article  Google Scholar 

  • Kokalis-Burelle N (2004) Development of multi-component transplant mixes for plant growth-promotion and disease suppression. Proceeding of the Fourth International Congress of Nematology, Nematology Monographs and Perspectives 2:187–194

    Google Scholar 

  • Krężel J, Kołota E (2014) Source of nitrogen affects the yield and quality of spinach cultivars grown for autumn harvest. Acta Agric Scand B Soil Plant Sci 64:583–589. https://doi.org/10.1080/09064710.2014.934273

    Article  CAS  Google Scholar 

  • Kumar V, Narula N (1999) Solubilization of inorganic phosphates and growth emergence of wheat as affected by Azotobacter chrococcum. Biol Fertil Soils 28:301–305

    Article  CAS  Google Scholar 

  • Kushwaha A, Baily SB, Maxton A, Ram GD (2013) Isolation and characterization of PGPR associated with cauliflower roots and its effect on plant growth. The Bioscan 8:95–99

    Google Scholar 

  • Lawrence BM (2007) Mint: the genus mentha. Medicinal and aromatic plants-industrial profiles. CRC Press/Taylor & Francis, Boca Raton

    Google Scholar 

  • Lee KH, Koh RH, Song HG (2008a) Enhancement of growth and yield of tomato by Rhodopseudomonas sp. under greenhouse conditions. J Microbiol 46:641–646. https://doi.org/10.1007/s12275-008-0159-2

    Article  CAS  PubMed  Google Scholar 

  • Lee KJ, Kamala-Kannan S, Sub HS, Seong CK, Lee GW (2008b) Biological control of Phytophthora blight in red pepper (Capsicum annuum L.) using Bacillus subtilis. World J Microbiol Biotechnol 24:1139–1145. https://doi.org/10.1007/s11274-007-9585-2

    Article  CAS  Google Scholar 

  • Lee KE, Radhakrishnan R, Kang SM, You YH et al (2015) Enterococcus faecium LKE12 cell-free extract accelerates host plant growth via gibberellin and indole-3-acetic acid secretion. J Microbiol Biotechnol 25:1467–1475. https://doi.org/10.4014/jmb.1502.02011

    Article  CAS  PubMed  Google Scholar 

  • Li CY, Hu WC, Pan B, Liu Y, Yuan SF, Ding YY, Li R, Zheng XY, Shen B, Shen QR (2017) Rhizobacterium Bacillus amyloliquefaciens strain SQRT3-mediated induced systemic resistance controls bacterial wilt of tomato. Pedosphere 27:1135–1146. https://doi.org/10.1016/S1002-0160(17)60406-5

  • Lim JH, Kim SD (2013) Induction of drought stress resistance by multi-functional PGPR Bacillus licheniformis K11 in pepper. Plant Pathol J 29:201–208. https://doi.org/10.5423/PPJ.SI.02.2013.0021

    Article  PubMed  PubMed Central  Google Scholar 

  • Liu K, Garrett C, Fadamiro H, Kloepper JW (2016a) Antagonism of black rot in cabbage by mixtures of plant growth-promoting rhizobacteria (PGPR). Biocontrol 61:605–613. https://doi.org/10.1007/s10526-016-9742-3

    Article  CAS  Google Scholar 

  • Liu K, Garrett C, Fadamiro H, Kloepper JW (2016b) Induction of systemic resistance in Chinese cabbage against black rot by plant growth-promoting rhizobacteria. Biol Cont 99:8–13. https://doi.org/10.1016/j.biocontrol.2016.04.007

    Article  Google Scholar 

  • Lucas JA, García-Cristobal J, Bonilla A, Ramos B, Gutierrez-Mañero J (2014) Beneficial rhizobacteria from rice rhizosphere confers high protection against biotic and abiotic stress inducing systemic resistance in rice seedlings. Plant Physiol Biochem 82:44–53. https://doi.org/10.1016/j.plaphy.2014.05.007

    Article  CAS  PubMed  Google Scholar 

  • Mangmang JS, Deaker R, Rogers G (2015) Early seedling growth response of lettuce, tomato and cucumber to Azospirillum brasilense inoculated by soaking and drenching. Hort Sci 42:37–46. https://doi.org/10.17221/159/2014-HORTSCI

  • Mardani-Talaee M, Razmjou J, Nouri-Ganbalani G, Hassanpour M, Naseri B (2017) Impact of Chemical, Organic and Bio-Fertilizers Application on Bell Pepper, Capsicum annuum L. and Biological Parameters of Myzus persicae (Sulzer) (Hem.: Aphididae). Neotrop Entomol 46:578–586. https://doi.org/10.1007/s13744-017-0494-2

    Article  CAS  PubMed  Google Scholar 

  • Medeiros FH, Moraes IS, da Silva Neto EB, Silveira EB, Rosa de Lima RM (2009) Management of melon bacterial blotch by plant beneficial bacteria. Phytoparasitica 37:453–460. https://doi.org/10.1007/s12600-009-0063-2

    Article  Google Scholar 

  • Mehta P, Walia A, Kulshrestha S, Chauhan A, Shirkot CK (2015) Efficiency of plant growth‐promoting P‐solubilizing Bacillus circulans CB7 for enhancement of tomato growth under net house conditions. J Basic Microbiol 55:33–44. https://doi.org/10.1002/jobm.201300562

  • Mena-Violante HG, Olalde-Portugal V (2007) Alteration of tomato fruit quality by root inoculation with plant growth-promoting rhizobacteria (PGPR): bacillus subtilis BEB-13bs. Sci Hort 113:103–106. https://doi.org/10.1016/j.scienta.2007.01.031

  • Nishihara E, Inoue M, Kondo K, Takahashi K, Nakata N (2001) Spinach yield and nutritional quality affected by controlled soil water matric head. Agric Water Manag 51:217229

    Article  Google Scholar 

  • Nga NTT, Giau NT, Long NT et al (2010) Rhizobacterially induced protection of watermelon against Didymella bryoniae. J Appl Microbiol 109:567–582. https://doi.org/10.1111/j.1365-2672.2010.04685.x

    Article  CAS  PubMed  Google Scholar 

  • Nosheen A, Bano A (2014) Potential of plant growth promoting rhizobacteria and chemical fertilizers on soil enzymes and plant growth. Pak J Bot 46:1521–1530

    Google Scholar 

  • Olivares FL, Aguiar NO, Rosa RCC, Canellas LP (2015) Substrate biofortification in combination with foliar sprays of plant growth promoting bacteria and humic substances boosts production of organic tomatoes. Sci Hort 183:100–108. https://doi.org/10.1016/j.scienta.2014.11.012

    Article  Google Scholar 

  • Ongena M, Daayf F, Jacques P, Thonart P, Benhamou N, Paulitz TC, Bélanger RR (2000) Systemic induction of phytoalexins in cucumber in response to treatments with fluorescent pseudomonads. Plant Pathol 49:523–530. https://doi.org/10.1046/j.13653059.2000.00468.x

    Article  CAS  Google Scholar 

  • Ordookhani K, Khavazi K, Moezzi A, Rejali F (2010) Influence of PGPR and AMF on antioxidant activity, lycopene and potassium contents in tomato. Afr J Agric Res 5:1108–1116. https://doi.org/10.5897/AJAR09.183

  • Orhan E, Esitken A, Ercisli S, Turan M, Sahin F (2006) Effects of plant growth promoting rhizobacteria (PGPR) on yield, growth and nutrient contents in organically growing raspberry. Sci Hortic 111:38–43. https://doi.org/10.1016/j.scienta.2006.09.002

    Article  CAS  Google Scholar 

  • Palada MC, Kalb TJ, Lumpkin TA (2006) The role of AVRDC-The world vegetable center in enhancing and promoting vegetable production in the tropics. HortScience 41:556–560

    Article  Google Scholar 

  • Park K, Park JW, Lee SW, Balaraju K (2013) Disease suppression and growth promotion in cucumbers induced by integrating PGPR agent Bacillus subtilis strain B4 and chemical elicitor ASM. Crop Prot 54:199–205. https://doi.org/10.1016/j.cropro.2013.08.017

    Article  CAS  Google Scholar 

  • Pastor N, Rosas S, Luna V, Rovera M (2014) Inoculation with Pseudomonas putida PCI2, a phosphate solubilizing rhizobacterium, stimulates the growth of tomato plants. Symbiosis 62:157–167. https://doi.org/10.1007/s13199-014-0281-3

    Article  CAS  Google Scholar 

  • Pastor N, Masciarelli O, Fischer S, Luna V, Rovera M (2016) Potential of Pseudomonas putida PCI2 for the protection of tomato plants against fungal pathogens. Curr Microbiol 73:346–353. https://doi.org/10.1007/s00284-016-1068-y

  • Pastor-Bueis R, Mulas R, Gomez X, Gonzalez-Andres F (2017) Innovative liquid formulation of digestates for producing a biofertilizer based on Bacillus siamensis: field testing on sweet pepper. J Plant Nut. Soil Sci 180:748–758. https://doi.org/10.1002/jpln.201700200

    Article  CAS  Google Scholar 

  • Patakioutas G, Dimou D, Kostoula O, Yfanti P, Paraskevopoulos A, Ntatsi G, Savvas D (2015) Inoculation of tomato roots with beneficial microorganisms as a means to control Fusarium oxysporum f. sp lycopersici and improve nutrient uptake and yield. Acta Hortic 1107:141–148. https://doi.org/10.17660/ActaHortic.2015.1107.19

    Article  Google Scholar 

  • Peng D, Luo K, Jiang H, Deng Y, Bai L, Zhou X (2017) Combined use of Bacillus subtilis strain B-001 and bactericide for the control of tomato bacterial wilt. Pest Manag Sci 73:1253–1257. https://doi.org/10.1002/ps.4453

    Article  CAS  PubMed  Google Scholar 

  • Peralta IE, Spooner DM (2007) History, origin and early cultivation of tomato (Solanaceae). In: Razdan MK, Mattoo AK (eds) Genetic Improvement of Solanaceous Crops, vol 2. CRC Press. Taylor and Francis, Boca Raton pp, pp 1–27

    Google Scholar 

  • Pii Y, Penn A, Terzano R, Crecchio C, Mimmo T, Cesco S (2015) Plant-microorganism-soil interactions influence the Fe availability in the rhizosphere of cucumber plants. Plant Physiol Biochem 87:45–52. https://doi.org/10.1016/j.plaphy.2014.12.014

    Article  CAS  PubMed  Google Scholar 

  • Podile AR, Kishore GK (2006) Plant growth-promoting rhizobacteria. In: Gnanamanickam SS (ed) Plant-Associated Bacteria: rhizosphere bacteria. Springer, Netherlands, pp 195–230

    Chapter  Google Scholar 

  • Radhakrishnan R, Lee IJ (2013) Regulation of salicylic acid, jasmonic acid and fatty acids in cucumber (Cucumis sativus L.)by spermidine promotes plant growth against salt stress. Acta Physiol Plant 35:3315–3322. https://doi.org/10.1007/s11738-013-1364-0

    Article  CAS  Google Scholar 

  • Ramesh R, Joshi AA, Ghanekar MP (2009) Pseudomonads: major antagonistic endophytic bacteria to suppress bacterial wilt pathogen, Ralstonia solanacearum in the eggplant (Solanum melongena L.). World J Microbiol Biotechnol 25:47–55. https://doi.org/10.1007/s11274-008-9859-3

    Article  Google Scholar 

  • Ramesh R, Phadke GS (2012) Rhizosphere and endophytic bacteria for the suppression of eggplant wilt caused by Ralstonia solanacearum. Crop Protec 37:35-41. https://doi.org/10.1016/j.cropro.2012.02.008

  • Rimmer SR, Shattuck VI, Buchwaldt L (2007) Compendium of Brassica disease. American phytopathological society, St. Paul, Minnesota

    Google Scholar 

  • Robacer M, Canali S, Kristensen HL, Bavec F, Mlakar SG, Jakop M, Bavec M (2016) Cover crops in organic field vegetable production. Sci Hortic 208:104–110. https://doi.org/10.1016/j.scienta.2015.12.029

    Article  Google Scholar 

  • Rodriguez H, Gonzalez T, Goire I, Bashan Y (2004) Gluconic acid production and phosphate solubilization by the plant growth-promoting bacterium Azospirillum spp. Naturewissenschaften 91:552–555. https://doi.org/10.1007/s00114-004-0566-0

    Article  CAS  Google Scholar 

  • Rodriguez Mendoza MDLN, San Miguel-Chavez R, Garcia Cue JL, Benavides Mendoza A (2013) Inoculatıon of growth-promotıng bacterıa ın melon (Cucumis melo). Interciencia 38:857–862

    Google Scholar 

  • Samancioglu A, Yildirim E, Sahin U (2016a) Effect of seedlings development, some physiological and biochemical properties of cabbage seedlings grown at different irrigation levels of the plant growth promoting rhizobacteria application. Kahramanmaras Sutcu Imam Unıversity Journal of Natural Sciences 19:332–338

    Google Scholar 

  • Samancioglu A, Yildirim E, Turan M, Kotan R, Sahin U, Kul R (2016b) Amelioration of drought stress adverse effect and mediating biochemical content of cabbage seedlings by plant growth promoting rhizobacteria. Int J Agric Bio 18:948–956. https://doi.org/10.17957/IJAB/15.0195

    Article  CAS  Google Scholar 

  • Samaniego-Gamez BY, Garruna R, Tun-Suarez JM, Kantun-Can J, Reyes-Ramirez A, Cervantes-Diaz L (2016) Bacillus spp. inoculation improves photosystem II efficiency and enhances photosynthesis in pepper plants. Chil J Agr Res 76:4. https://doi.org/10.4067/s0718-5839201600040000

  • Sang MK, Jeong JJ, Kim J, Kim KD (2018) Growth promotion and root colonisation in pepper plants by phosphate-solubilising Chryseobacterium sp. strain ISE14 that suppresses Phytophthora blight. Ann Appl Biol 172:208–223. https://doi.org/10.1111/aab.12413

    Article  CAS  Google Scholar 

  • Sang MK, Kim KD (2012) Plant growth-promoting rhizobacteria suppressive to Phytophthora blight affect microbial activities and communities in the rhizosphere of pepper (Capsicum annuum L.) in the field. Appl Soil Ecol 62:88–97. https://doi.org/10.1016/j.apsoil.2012.08.001

    Article  Google Scholar 

  • Santoro MV, Zygadlo J, Giordano W, Banchio E (2011) Volatile organic compounds from rhizobacteria increase biosynthesis of essential oils and growth parameters in peppermint (Mentha piperita). Plant Physiol Biochem 49:1177–1182. https://doi.org/10.1016/j.plaphy.2011.07.016

    Article  CAS  PubMed  Google Scholar 

  • Santoro MV, Cappellari LR, Giordano W, Banchio E (2015) Plant growth-promoting effects of native Pseudomonas strains on Mentha piperita (peppermint): an in vitro study. Plant Biol 17:1218–1226. https://doi.org/10.1111/plb.12351

    Article  CAS  PubMed  Google Scholar 

  • Sharma IP, Sharma AK (2017) Physiological and biochemical changes in tomato cultivar PT-3 with dual inoculation of mycorrhiza and PGPR against root-knot nematode. Symbiosis 71:175–183. https://doi.org/10.1007/s13199-016-0423-x

  • Sharma SP, Leskovar DI, Crosby KM. Volder A (2017) Root growth dynamics and fruit yield of melon (Cucumis melo L) genotypes at two locations with sandy loam and clay soils. Soil Tillage Res 168:50–62. http://dx.doi.org/10.1016/j.still.2016.12.0060167-1987/

  • Shen M, Kang YJ, Wang HL, Zhang XS, Zhao QX (2012) Effect of plant growth-promoting rhizobacteria (PGPRs) on plant growth, yield, and quality of tomato (Lycopersicon esculentum Mill.) under simulated seawater irrigation. J Gen Appl Microbiol 58:253–262. https://doi.org/10.2323/jgam.58.253

    Article  CAS  PubMed  Google Scholar 

  • Shrestha A, Kim EC, Lim CK, Cho SY, Hur JH, Park DH (2009) Biological control of soft rot on chinese cabbage using beneficial bacterial agents in greenhouse and field. Korean J Pestic Sci 13:325–331

    Google Scholar 

  • Siddikee MA, Chauhan PS, Sa T (2012) Regulation of ethylene biosynthesis under salt stress in red pepper (Capsicum annuum L.) by 1-Aminocyclopropane-1Carboxylic Acid (ACC) deaminase-producing halotolerant bacteria. J Plant Growth Regul 31:265–272. https://doi.org/10.1007/s00344-011-9236-6

    Article  CAS  Google Scholar 

  • Singh N, Raina S, Singh D, Ghosh M, Helfish AIAI (2017) Exploitation of promising native strains of bacillus subtilis with antagonistic properties against fungal pathogens and their PGPR characteristic. J Plant Pathol 99:27–35. https://doi.org/10.4454/jpp.v99i1.3809

    Article  Google Scholar 

  • Son JS, Sumayo M, Hwang YJ, Kim BS, Ghim SY (2014) Screening of plant growth-promoting rhizobacteria as elicitor ofsystemic resistance against gray leaf spot disease in pepper. Appl Soil Ecol 73:1–8. https://doi.org/10.1016/j.apsoil.2013.07.016

    Article  Google Scholar 

  • Sottero AN, Freitas SD, de Melo AMT, Trani PE (2006) Rhizobacteria and lettuce: root colonization, plant growth promotion and biological control. Rev Bras Cienc Solo 30:225–234

    Article  Google Scholar 

  • Sundara B, Natarajan V, Hari K (2002) Influence of phosphorus solubilizing bacteria on the changes in soil available phosphorus and sugarcane and sugar yields. Field Crop Res 77:43–49. https://doi.org/10.1016/S0378-4290(02)00048-5

    Article  Google Scholar 

  • Supanjani, Han HS, Jung JS, Lee KD (2006) Rock phosphate-potassium and rock-solubilising bacteria as alternative, sustainable fertilisers. Agron Sustain Dev 26:233–240. https://doi.org/10.1051/agro:2006020

  • Swaider JM, George W, McCollum JP (1992) Producing vegetable crops. Interstate Printers and Publishers, Danville, Illinois

    Google Scholar 

  • Şahin F, Çakmakçi R, Kantar F (2004) Sugar beet and barley yields in relation to inoculation with N2-fixing and phosphate solubilizing bacteria. Plant Soil 265:123–129

    Article  Google Scholar 

  • Tailor AJ, Joshi BH (2014) Harnessing plant growth promoting rhizobacteria beyond nature: a review. J Plant Nutr 37:1534–1571. https://doi.org/10.1080/01904167.2014.911319

    Article  CAS  Google Scholar 

  • Tallapragada P, Dikshit R, Seshagiri S (2016) Influence of Rhizophagus spp. and Burkholderia seminalis on the growth of tomato (Lycopersicon esculatum) and bell pepper (Capsicum annuum) under drought stress. Commun Soil Sci Plant Anal 47(17):1975–1984. https://dx.doi.org/10.1080/00103624.2016.1216561

  • Tanwar A, Aggarwal A, Parkash V (2014) Effect of bioinoculants and superphosphate fertilizer on the growth and yield of broccoli (Brassica oleracea L. var. italica Plenck). New Zeal J Crop Hort 42:288–302. https://doi.org/10.1080/01140671.2014.924537

    Article  CAS  Google Scholar 

  • Tenuta M (2004) Plant PGPR. Prospects for increasing nutrient acquisition and disease control. Available via DIALOG. http://www.umanitoba.ca/faculties/afs/MAC_proceedings/2003/pdf/tenuta_rhizobacteria.pdf. Accessed 08 June 2018

  • Thakur J,  Kumar P, Mohit (2018) Studies on conjoint application of nutrient sources and PGPR on growth, yield, quality, and economics of cauliflower (Brassica oleracea var. botrytis L.). J Plant Nutr 41:1862–1867. https://doi.org/10.1080/01904167.2018.1463382

  • Thanh DT, Tarn LTT, Hanh NT, Tuyen NH, Bharathkumar S, Lee SV, Park KS (2009) Biological control of soilborne diseases on tomato, potato and black pepper by selected PGPR in the greenhouse and field in Vietnam. Plant Pathol J 25:263–269. https://doi.org/10.5423/PPJ.2009.25.3.263

    Article  Google Scholar 

  • Tripti, Kumar A, Usmani Z, Kumar V, Anshumali (2017) Biochar and flyash inoculated with plant growth promoting rhizobacteria act as potential biofertilizer for luxuriant growth and yield of tomato plant. J Environ Manage 190:20–27. https://doi.org/10.1016/j.jenvman.2016.11.060

  • Turan M, Ekinci M, Yildirim E, Gunes A, Karagoz K, Kotan R, Dursun A (2014) Plant growth-promoting rhizobacteria improved growth, nutrient, and hormone content of cabbage (Brassica oleracea) seedlings. Turk J Agric For 38:327–333. https://doi.org/10.3906/tar-1308-62

    Article  CAS  Google Scholar 

  • Umesha S, Roohie RK (2017) Role of Pseudomonas fluorescens and INA against black rot of cabbage. J Phytopathol 165:265–275. https://doi.org/10.1111/jph.12558

    Article  CAS  Google Scholar 

  • Utkhede RS, Koch CA (1999) Rhizobacterial growth and yield promotion of cucumber plants inoculated with Pythium aphanidermatum. Can J Plant Pathol 21:265–271. https://doi.org/10.1080/07060669909501189

    Article  Google Scholar 

  • Urashima Y, Suga Y, Hori K (2005) Growth promotion of spinach by fluorescent Pseudomonas strains under application of organic materials. J Soil Sci Plant Nutr 51:841–847. https://doi.org/10.1111/j.1747-0765.2005.tb00119.x

    Article  CAS  Google Scholar 

  • van Loon LC, Bakker PAHM, Pieterse CMJ (1998) Systemic resistance induced by rhizosphere bacteria. Annu Rev Phytopathol 36:453–483. https://doi.org/10.1146/annurev.phyto.36.1.453

    Article  PubMed  Google Scholar 

  • Vessey JK (2003) Plant growth promoting rhizobacteria as biofertilizers. Plant Soil 255:571–586

    Article  CAS  Google Scholar 

  • Vural H, Eiyok D, Duman I (2000) Cultural vegetables (Vegetable growing). Bornova, İzmir

    Google Scholar 

  • Wan T, Zhao H, Wang W (2018) Effects of the biocontrol agent Bacillus amyloliquefaciens SN16-1 on the rhizosphere bacterial community and growth of tomato. J Phytopathol 166:324–332. https://doi.org/10.1111/jph.12690

    Article  CAS  Google Scholar 

  • Welbaum GE (2015) Vegetable production and practices. CABI International, Boston

    Book  Google Scholar 

  • Widnyana IK, Javandira C (2016) Activities Pseudomonas spp. and Bacillus sp. to stimulate germination and seedling growth of tomato plants. Agric Agric Sci Procedia 9:419–423. https://doi.org/10.1016/j.aaspro.2016.02.158

  • Whitelaw MA (2000) Growth promotion of plants inoculated with phosphate-solubilizing fungi. Adv Agron 69:99–151

    Google Scholar 

  • Wu Y, Zhao CY, Farmer J, Sun JD (2015) Effects of bio-organic fertilizer on pepper growth and Fusarium wilt biocontrol. Sci Hortic 193:114–120. https://doi.org/10.1016/j.scienta.2015.06.039

    Article  Google Scholar 

  • Xu SJ, Kim BS (2016) Evaluation of Paenibacillus polymyxa strain SC09-21 for biocontrol of Phytophthora blight and growth stimulation in pepper plants. Trop Plant Pathol 41:162–168. https://doi.org/10.1007/s40858-016-0077-5

    Article  Google Scholar 

  • Yan JM, Smith MD, Glick BR, Liang Y (2014) Effects of ACC deaminase containing rhizobacteria on plant growth and expression of Toc GTPases in tomato (Solanum lycopersicum) under salt stress. Botany 92:775–781. https://doi.org/10.1139/cjb-2014-0038

    Article  CAS  Google Scholar 

  • Yaoyao E, Yuan J, Yang F et al (2017) PGPR strain Paenibacillus polymyxa SQR-21 potentially benefits watermelon growth by re-shaping root protein expression. AMB Express 7:104. https://doi.org/10.1186/s13568-017-0403-4

    Article  CAS  Google Scholar 

  • Yildirim E, Karlidag H, Turan M, Dursun A, Goktepe F (2011) Growth, nutrient uptake, and yield promotion of broccoli by plant growth promoting rhizobacteriawith manure. HortScience 46:932–936

    Article  CAS  Google Scholar 

  • Yildirim E, Turan M, Ekinci M, Dursun A, Gunes A, Donmez MF (2015) Growth and mineral content of cabbage seedlings in response to nitrogen fixing rhizobacteria treatment. Rom Biotechnol Lett 20:10929–10935

    CAS  Google Scholar 

  • Yildirim E, Turan M, Dursun A, Ekinci M, Kul R, Karagoz FP, Donmez MF, Kitir N (2016) Integrated use of nitrogen fertilization and microbial inoculation: change in the growth and chemical composition of white cabbage. Commun Soil Sci Plant Anal 47:2245–2260. https://doi.org/10.1080/00103624.2016.1228955

    Article  CAS  Google Scholar 

  • Yildiz HN, Altinok HH, Dikilitas M (2012) Screening of Rhizobacteria against Fusarium oxysporum f. sp. melongenae, the Causal Agent of Wilt Disease of Eggplant. Afr J Microbiol Res 6:3700–3706. https://doi.org/10.5897/AJMR12.307

    Article  CAS  Google Scholar 

  • Zohary D, Hopf M, Weiss E (2012) Domestication of plants in the old world. Oxford University Press, Oxford

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haluk Caglar Kaymak .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kaymak, H.C. (2019). Potential of PGPR in Improvement of Environmental-Friendly Vegetable Production. In: Maheshwari, D., Dheeman, S. (eds) Field Crops: Sustainable Management by PGPR. Sustainable Development and Biodiversity, vol 23. Springer, Cham. https://doi.org/10.1007/978-3-030-30926-8_9

Download citation

Publish with us

Policies and ethics