Skip to main content

The Role of Rhizobacterial Volatile Organic Compounds in a Second Green Revolution—The Story so Far

  • Chapter
  • First Online:
Field Crops: Sustainable Management by PGPR

Abstract

The role of microbial-emitted volatiles (mVOCs) also termed ‘infochemicals’ in agriculture is an emerging area of research with many perceived attributes including but not limited to the alleviation of abiotic and biotic stress factors. Several reports in the literature to date have demonstrated the potential of these mVOCs in plant growth-promotion and disease-suppression, albeit mainly under artificial conditions. The mVOCs are low molecular mass compounds with a high vapour pressure and low boiling point and through diffusion can affect a response over a long distance both above and below ground. They belong to many different classes of chemicals that include terpenes, alcohols, alkenes and ketones amongst others. This review examines recent literature in this area and cites examples of mVOCs, or more particularly; bacterial-derived volatile compounds hereby referred to as ‘BVCs’, that have plant growth promoting and biocontrol effects. The multifaceted role of BVCs can be viewed as an integral part of a second green revolution in agriculture where alternative environmentally-friendly solutions are being sought for crop protection and bio-stimulation. Their ability to modulate plant photosynthetic and ISR pathways may provide the agricultural sector with more sustainable solutions for increased crop protection and production in the face of increasing climate and population changes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahmed E, Holmström SJM (2014) Siderophores in environmental research: roles and applications. Microb. Biotech 7:196–208

    Article  CAS  Google Scholar 

  • Almenar E, Del Valle V, Catala R, Gavara R (2007) Active package for wild strawberry fruit (Fragaria vesca L.). J Agric Food Chem 55:2240–2245

    Article  CAS  PubMed  Google Scholar 

  • Arrebola E, Sivakumar D, Korsten L (2010) Effect of volatile compounds produced by Bacillus strains on postharvest decay in citrus. Biol Cont 53:122–128

    Article  CAS  Google Scholar 

  • Athukorala SNP, Fernando WGD, Rashid KY, De Kievit T (2010) The role of volatile and non-volatile antibiotics produced by Pseudomonas chlororaphis strain PA23 in its root colonization and control of Sclerotinia sclerotiorum. Biocont Sci Technol 20:875–890

    Article  Google Scholar 

  • Bailly A, Weisskopf L (2012) The modulating effect of bacterial volatiles on plant growth: current knowledge and future challenges. Plant Signal Behav 7:79–85

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bailly A, Weisskopf L (2017) Mining the volatilomes of plant-associated microbiota for new biocontrol solutions. Front Microbiol 8:1638

    Article  PubMed  PubMed Central  Google Scholar 

  • Besset-Manzoni Y, Rieusset L, Joly P, Comte G, Prigent-Combaret C (2018) Exploiting rhizosphere microbial cooperation for developing sustainable agriculture strategies. Environ Sci Pollut Res 25:29953

    Article  Google Scholar 

  • Biondi E, Blasioli S, Galeone A, Spinelli F, Cellini A, Luchese C, Braschi I (2014) Detection of potato brown rot and ring rot by electronic nose: From laboratory to real scale. Talanta 129:422–430

    Article  CAS  PubMed  Google Scholar 

  • Blom D, Fabbri C, Connor EC, Schiestl FP, Klauser DR, Boller T, Eberl L, Weisskopf L (2011a) Production of plant growth modulating volatiles is widespread among rhizosphere bacteria and strongly depends on culture conditions. Environ Microbiol 13:3047–3058

    Article  CAS  PubMed  Google Scholar 

  • Blom D, Fabbri C, Eberl L, Weisskopf L (2011b) Volatile-mediated killing of Arabidopsis thaliana by bacteria is mainly due to hydrogen cyanide. Appl Environ Microbiol 77:1000–1008

    Article  CAS  PubMed  Google Scholar 

  • Blumer C, Haas D (2000) Iron regulation of the hcnABC genes encoding hydrogen cyanide synthase depends on the anaerobic regulator ANR rather than on the global activator GacA in Pseudomonas fluorescens CHA0. Microbiol 146:2417–2424

    Article  CAS  Google Scholar 

  • Brilli F, Loreto F, Baccelli I (2019) Exploiting Plant Volatile Organic Compounds (VOCs) in Agriculture to Improve Sustainable Defense Strategies and Productivity of Crops. Front Plant Sci 10:264

    Article  PubMed  PubMed Central  Google Scholar 

  • Carmen Orozco-Mosqueda M, Macías-Rodríguez L, Santoyo G, Farías-Rodríguez R, Valencia-Cantero E (2013) Medicago truncatula increases its iron-uptake mechanisms in response to volatile organic compounds produced by Sinorhizobium meliloti. Folia Microbiol 58:579–585

    Article  CAS  Google Scholar 

  • Cernava T, Müller H, Aschenbrenner IA, Grube M, Berg G (2015) Analysing the antagonistic potential of the lichen microbiome against pathogens by bridging metagenomic with culture studies. Front Microbiol 6:620

    PubMed  PubMed Central  Google Scholar 

  • Chen H, Xiao X, Wang J, Wu L, Zheng Z, Yu Z (2008) Antagonistic effects of volatiles generated by Bacillus subtilis on spore germination and hyphal growth of the plant pathogen, Botrytis cinerea. Biotechnol Lett 30:919–923

    Article  CAS  PubMed  Google Scholar 

  • Cho G, Kim J, Park CG, Nislow C, Weller DM, Kwak Y-S (2017) Caryolan-1-ol, an antifungal volatile produced by Streptomyces spp., inhibits the endomembrane system of fungi. Open Biol 7:170075

    Google Scholar 

  • Cho SM, Kang BR, Han SH, Anderson AJ, Park J-Y, Lee Y-H, Cho BH, Yang K-Y, Ryu C-M, Kim YC (2008) 2R,3R-Butanediol, a bacterial volatile produced by Pseudomonas chlororaphis O6, is involved in induction of systemic tolerance to drought in Arabidopsis thaliana. Mol Plant Microbe Interact 21:1067–1075

    Article  CAS  PubMed  Google Scholar 

  • Choi HK, Song GC, Yi HS, Ryu C-M (2014) Field evaluation of the bacterial volatile derivative 3-pentanol in priming for induced resistance in pepper. J Chem Ecol 40:882–892

    Article  CAS  PubMed  Google Scholar 

  • Chuankun X, Minghe M, Leming Z, Keqin Z (2004) Soil volatile fungistasis and volatile fungistatic compounds. Soil Biol Biochem 36:1997–2004

    Article  CAS  Google Scholar 

  • Compant S, Duffy B, Nowak J, Clément C, Barka EA (2005) Use of plant growth-promoting bacteria for biocontrol of plant diseases: principles, mechanisms of action, and future prospects. Appl Environ Microbiol 71:4951–4959

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Coosemans J (2005) Dimethyl disulphide (DMDS): a potential novel nematicide and soil disinfectant. Acta Hortic (ISHS) 698:57–64

    Article  CAS  Google Scholar 

  • Dandurishvili N, Toklikishvili N, Ovadis M, Eliashvili P, Giorgobiani N, Keshelava R, Tediashvili M, Vainstein A, Khmel I, Szegedi E, Chernin L (2011) Broad-range antagonistic rhizobacteria Pseudomonas fluorescens and Serratia plymuthica suppress Agrobacterium crown gall tumours on tomato plants. J Appl Microbiol 110:341–352

    Article  CAS  PubMed  Google Scholar 

  • Dimkić I, Stanković S, Nišavić M, Petković M, Ristivojević P, Fira D, Berić T (2017) The profile and antimicrobial activity of Bacillus lipopeptide extracts of five potential biocontrol strains. Front Microbiol 8:925

    Article  PubMed  PubMed Central  Google Scholar 

  • Effmert U, Kalderás J, Warnke R, Piechulla B (2012) Volatile mediated interactions between bacteria and fungi in the soil. J Chem Ecol 38:665–703

    Article  CAS  PubMed  Google Scholar 

  • Farag MA, Ryu C-M, Sumner LW, Paré PW (2006) GC–MS SPME profiling of rhizobacterial volatiles reveals prospective inducers of growth promotion and induced systemic resistance in plants. Phytochemistry 67:2262–2268

    Article  CAS  PubMed  Google Scholar 

  • Farag MA, Song GC, Park Y-S, Audrain B, Lee S, Ghigo JM, Kloepper JW, Ryu C-M (2017) Biological and chemical strategies for exploring inter- and intra-kingdom communication mediated via bacterial volatile signals. Nat Protoc 12:1359–1377

    Article  CAS  PubMed  Google Scholar 

  • Fernando WGD, Ramarathnam R, Krishnamoorthy AS, Savchuk SC (2005) Identification and use of potential bacterial organic antifungal volatiles in biocontrol. Soil Biol Biochem 37:955–964

    Article  CAS  Google Scholar 

  • Fiddaman PJ, Rossall S (1993) The production of antifungal volatiles by Bacillus subtilis. J Appl Bacteriol 74:119–126

    Article  CAS  PubMed  Google Scholar 

  • Fiddaman PJ, Rossall S (1994) Effect of substrate on the production of antifungal volatiles from Bacillus subtilis. J Appl Bacteriol 76:395–405

    Article  CAS  PubMed  Google Scholar 

  • Fincheira P, Quiroz A (2018) Microbial volatiles as plant growth inducers. Microbiol Res 208:63–75

    Article  CAS  PubMed  Google Scholar 

  • Fritsch J (2005) Dimethyl disulfide as a new chemical potential alternative to methyl bromide in soil disinfestation in France. Acta Hortic (ISHS) 698:71–76

    Article  CAS  Google Scholar 

  • Glick BR (2014) Bacteria with ACC deaminase can promote plant growth and help to feed the world. Microbiol Res 69:30–39

    Article  CAS  Google Scholar 

  • Groenhagen U, Baumgartner R, Bailly A, Gardiner A, Eberl L, Schulz S, Weisskopf L (2013) Production of bioactive volatiles by different Burkholderia ambifaria Strains. J Chem Ecol 39:892–906

    Article  CAS  PubMed  Google Scholar 

  • Grosch R, Faltin F, Lottmann J, Kofoet A, Berg G (2005) Effectiveness of 3 antagonistic bacterial isolates to control Rhizoctonia solani Kühn on lettuce and potato. Can J Microbiol 51:345–353

    Article  CAS  PubMed  Google Scholar 

  • Gu Y-Q, Mo M-H, Zhou J-P, Zou C-S, Zhang K-Q (2007) Evaluation and identification of potential organic nematicidal volatiles from soil bacteria. Soil Biol Biochem 39:2567–2575

    Article  CAS  Google Scholar 

  • Gutiérrez-Luna F, López-Bucio J, Altamirano-Hernández J, Valencia-Cantero E, Cruz H, Macías-Rodríguez L (2010) Plant growth-promoting rhizobacteria modulate root-system architecture in Arabidopsis thaliana through volatile organic compound emission. Symbiosis 51:75–83

    Article  CAS  Google Scholar 

  • Hérnandez-Calderón E, Aviles-Garcia ME, Castulo-Rubio DY, Macías-Rodríguez L, Ramírez VM, Santoyo G, López-Bucio J, Valencia-Cantero E (2018) Volatile compounds from beneficial or pathogenic bacteria differentially regulate root exudation, transcription of iron transporters, and defense signaling pathways in Sorghum bicolor. Plant Mol Biol 96:291–304

    Article  CAS  PubMed  Google Scholar 

  • Howell CR, Beier RC, Stipanovic RD (1988) Production of ammonia by Enterobacter cloacae and its possible role in the biological control of Pythium preemergence damping-off by the bacterium. Phytopathology 78:1075–1078

    Article  CAS  Google Scholar 

  • Huang C-J, Tsay J-F, Chang S-Y, Yang H-P, Wu W-S, Chen C-Y (2012) Dimethyl disulfide is an induced systemic resistance elicitor produced by Bacillus cereus C1L. Pest Manag Sci 68:1306–1310

    Article  CAS  PubMed  Google Scholar 

  • Huang Y, Xu C, Ma L, Zhang K, Duan C, Mo M (2010) Characterisation of volatiles produced from Bacillus megaterium YFM3.25 and their nematicidal activity against Meloidogyne incognita. Euro J Plant Pathol 126:417–422

    Article  CAS  Google Scholar 

  • Jeong H, Choi S-K, Ryu C-M, Park S-H (2019) Chronicle of a soil bacterium: Paenibacillus polymyxa E681 as a tiny guardian of plant and human health. Front Microbiol 10:467

    Article  PubMed  PubMed Central  Google Scholar 

  • Kai M, Crespo E, Cristescu SM, Harren FJ, Francke W, Piechulla B (2010) Serratia odorifera: analysis of volatile emission and biological impact of volatile compounds on Arabidopsis thaliana. Appl Microbiol Biotechnol 88:965–976

    Article  CAS  PubMed  Google Scholar 

  • Kai M, Effmert U, Berg G, Piechulla B (2007) Volatiles of bacterial antagonists inhibit mycelial growth of the plant pathogen Rhizoctonia solani. Arch Microbiol 187:351–360

    Article  CAS  PubMed  Google Scholar 

  • Kai M, Haustein M, Molina F, Petri A, Scholz B, Piechulla B (2009) Bacterial volatiles and their action potential. Appl Microbiol Biotechnol 81:1001–1012

    Article  CAS  PubMed  Google Scholar 

  • Kai M, Piechulla B (2009) Plant growth promotion due to rhizobacterial volatiles – An effect of CO2? FEBS Lett 583:3473–3477

    Article  CAS  PubMed  Google Scholar 

  • Kai M, Piechulla B (2010) Impact of volatiles of the rhizobacteria Serratia odorifera on the moss Physcomitrella patens. Plant Signal Behav 5:444–446

    Article  PubMed  PubMed Central  Google Scholar 

  • Kai M, Effmert U, Piechulla B (2016) Bacterial-plant-interactions: approaches to unravel the biological function of bacterial volatiles in the rhizosphere. Front. Microbiol. 7

    Google Scholar 

  • Kanchiswamy CN, Malnoy M, Maffei M (2015) Chemical diversity of microbial volatiles and their potential for plant growth and productivity. Front Plant Sci 6:151

    Article  PubMed  PubMed Central  Google Scholar 

  • Kim J-S, Lee J, Seo S-J, Lee C, Woo SY, Kim S-H (2015) Gene expression profile affected by volatiles of new plant growth promoting rhizobacteria, Bacillus subtilis strain JS, in tobacco. Genes Genom 37:387–397

    Article  CAS  Google Scholar 

  • Kloepper JW, Rodríguez-Kábana R, Zehnder AW, Murphy JF, Sikora E, Fernández C (1999) Plant root-bacterial interactions in biological control of soilborne diseases and potential extension to systemic and foliar diseases. Australas Plant Pathol 28:21–26

    Article  Google Scholar 

  • Kloepper JW and Schroth MN (1978) Plant growth promoting rhizobacteria on radishes. In: Proceedings of the 4th international conference on plant pathogenic bacteria, angers, France, vol 2, pp 879–882

    Google Scholar 

  • Kurze S, Bahl H, Dahl R, Berg G (2001) Biological control of fungal strawberry diseases by Serratia plymuthica HRO-C48. Plant Dis 85:529–534

    Article  PubMed  Google Scholar 

  • Kwon Y, Ryu C-M, Lee S, Park H, Han K, Lee J, Lee K, Chung W, Jeong M-J, Kim H, Bae D-W (2010) Proteome analysis of Arabidopsis seedlings exposed to bacterial volatiles. Planta 232:1355–1370

    Article  CAS  PubMed  Google Scholar 

  • Leach J, Triplett LR, Argueso CT, Trivedi P (2017) Communication in the phytobiome. Cell 169(4):587–596

    Article  CAS  PubMed  Google Scholar 

  • Lee B, Farag MA, Park HB, Kloepper JW, Lee SH, Ryu C-M (2012) Induced resistance by a long-chain bacterial volatile: elicitation of plant systemic defense by a C13 volatile produced by Paenibacillus polymyxa. PLoS One 7:e48744

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu H, Brettell LE (2019) Plant defense by VOC-induced microbial priming. Trends Plant Sci 24:187–189

    Article  CAS  PubMed  Google Scholar 

  • Liu W, Zhao L, Wang C, Mu W, Liu F (2009) Bioactive evaluation and application of antifungal volatiles generated by five soil bacteria. Acta Phytophyl Sin 36:97–105

    CAS  Google Scholar 

  • López-Bucio J, Campos-Cuevas JC, Hernández-Calderón E, Velásquez-Becerra C, Farías-Rodríguez R, Macías-Rodríguez LI, Valencia-Cantero E (2007) Bacillus megaterium rhizobacteria promote growth and alter root-system architecture through an auxin- and ethylene-independent signaling mechanism in Arabidopsis thaliana. Mol Plant Microbe Interact 20:207–217

    Article  CAS  PubMed  Google Scholar 

  • Lugtenberg B, Kamilova F (2009) Plant-growth-promoting rhizobacteria. Ann Rev Microbiol 63:541–556

    Article  CAS  Google Scholar 

  • Marquez-Villavicencio MDP, Weber B, Witherell RA, Willis DK, Charkowski AO (2011) The 3-Hydroxy-2-Butanone pathway is required for Pectobacterium carotovorum pathogenesis. PLoS One 6:e22974

    Article  CAS  PubMed Central  Google Scholar 

  • Müller H, Westendorf C, Leitner E, Chernin L, Riedel K, Schmidt S, Eberl L, Berg G (2009) Quorum-sensing effects in the antagonistic rhizosphere bacterium Serratia plymuthica HRO-C48. FEMS Microbiol Ecol 67:468–478

    Article  CAS  PubMed  Google Scholar 

  • Nawrath T, Mgode GF, Weetjens B, Kaufmann SH, Schulz S (2012) The volatiles of pathogenic and nonpathogenic mycobacteria and related bacteria. Beilstein J Org Chem 8:290–299

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nicholson WL (2008) The Bacillus subtilis ydjL (bdhA) gene encodes acetoin reductase/2,3-Butanediol dehydrogenase. Appl Environ Microbiol 74:6832–6838

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Oteino N, Lally RD, Kiwanuka S, Lloyd A, Ryan D, Germaine KJ, Dowling DN (2015) Plant growth promotion induced by phosphate solubilizing endophytic Pseudomonas isolates. Front Microbiol 6:745

    Article  PubMed  PubMed Central  Google Scholar 

  • Park Y-S, Dutta S, Ann M, Raajmakers JM, Park K (2015) Promotion of plant growth by Pseudomonas fluorescens strain SS101 via novel volatile organic compounds. Biochem Biophys Res Commun 461:361–365

    Article  CAS  PubMed  Google Scholar 

  • Park HB, Lee B, Kloepper JW, Ryu CM (2013) One shot-two pathogens blocked: exposure of Arabidopsis to hexadecane, a long chain volatile organic compound, confers induced resistance against both Pectobacterium carotovorum and Pseudomonas syringae. Plant Signal Behav 8:e24619

    Article  CAS  PubMed  Google Scholar 

  • Rath M, Mitchell TR, Gold SE (2018) Volatiles produced by Bacillus mojavensis RRC101 act as plant growth modulators and are strongly culture-dependent. Microbiol Res 208:76–84

    Article  CAS  PubMed  Google Scholar 

  • Rijavec T, Lapanje A (2016) Hydrogen cyanide in the rhizosphere: not suppressing plant pathogens, but rather regulating availability of phosphate. Front Microbiol 7:1785

    Article  PubMed  PubMed Central  Google Scholar 

  • Romera FJ, García MJ, Lucena C, Martínez-Medina A, Aparicio MA, Ramos J, Alcántara E, Angulo M, Pérez-Vicente R (2019) Induced systemic resistance (ISR) and fe deficiency responses in dicot plants. Front Plant Sci 10:287

    Article  PubMed  PubMed Central  Google Scholar 

  • Rosier A, Medeiros FHV, Bais HP (2018) Defining plant growth promoting rhizobacteria molecular and biochemical networks in beneficial plant-microbe interactions. Plant Soil 428:35

    Article  CAS  Google Scholar 

  • Rudrappa T, Biedrzycki ML, Kunjeti SG, Donofrio NM, Czymmek KJ, Paul WP, Bais HP (2010) The rhizobacterial elicitor acetoin induces systemic resistance in Arabidopsis thaliana. Commun Integr Biol 3:130–138

    Article  PubMed  PubMed Central  Google Scholar 

  • Ryu C-M, Farag MA, Hu C-H, Reddy MS, Kloepper JW, Paré PW (2004) Bacterial volatiles induce systemic resistance in Arabidopsis. Plant Physiol 134:1017–1026

    Google Scholar 

  • Ryu CM, Farag MA, Hu CH, Reddy MS, Kloepper JW, Paré PW (2004) Bacterial volatiles induce systemic resistance in Arabidopsis. Plant Physiol 134(3):1017–1026 (Published correction appears in Plant Physiol. 2005 Apr;137(4):1486)

    Google Scholar 

  • Ryu C-M, Farag MA, Hu C-H, Reddy MS, Wei H-X, Paré PW, Kloepper JW (2003) Bacterial volatiles promote growth in Arabidopsis. Proc Natl Acad Sci 100:4927–4932

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ryu C-M, Hu C-H, Locy R, Kloepper J (2005a) Study of mechanisms for plant growth promotion elicited by rhizobacteria in Arabidopsis thaliana. Plant Soil 268:285–292

    Article  CAS  Google Scholar 

  • Ryu C-M, Farag MA, Paré PW, Kloepper JW (2005b) Invisible signals from the underground: bacterial volatiles elicit plant growth promotion and induce systemic resistance. Plant Pathol J 21:7–12

    Article  Google Scholar 

  • Sang MK, Kim JD, Kim BS, Kim KD (2011) Root treatment with rhizobacteria antagonistic to Phytophthora blight affects anthracnose occurrence, ripening, and yield of pepper fruit in the plastic house and field. Phytopathology 101(6):666–678

    Google Scholar 

  • Santoro MV, Zygadlo J, Giordano W, Banchio E (2011) Volatile organic compounds from rhizobacteria increase biosynthesis of essential oils and growth parameters in peppermint (Mentha piperita). Plant Physiol Biochem 49:1177–1182

    Article  CAS  PubMed  Google Scholar 

  • Schulz-Bohm K (2017) Microbial volatiles: small molecules with an important role in intra- and inter-kingdom interactions. Front Microbiol 8:2484

    Article  PubMed  PubMed Central  Google Scholar 

  • Shao J, Xu Z, Zhang N, Shen Q, Zhang R (2015) Contribution of indole-3-acetic acid in the plant growth promotion by the rhizospheric strain Bacillus amyloliquefaciens SQR9. Biol Fertil Soils 51:321

    Article  CAS  Google Scholar 

  • Sharifi R, Ryu CM (2016) Making healthier or killing enemies? Bacterial volatile-elicited plant immunity plays major role upon protection of Arabidopsis than the direct pathogen inhibition. Commun Integr Biol 9:e1197445

    Google Scholar 

  • Sharifi R, Ryu C-M (2018a) Revisiting bacterial volatile-mediated plant growth promotion: lessons from the past and objectives for the future. Ann Bot 122:349–358

    Article  PubMed  PubMed Central  Google Scholar 

  • Sharifi R, Ryu C-M (2018b) Biogenic volatile compounds for plant disease diagnosis and health improvement. Plant Pathol J 34:459–469

    PubMed  PubMed Central  Google Scholar 

  • Singh S (2014) A review on possible elicitor molecules of cyanobacteria: their role in improving plant growth and providing tolerance against biotic or abiotic stress. J Appl Microbiol 117:1221–1244

    Article  CAS  PubMed  Google Scholar 

  • Song G, Ryu C-M (2013) Two volatile organic compounds trigger plant self-defense against a bacterial pathogen and a sucking insect in cucumber under open field conditions. Int J Mol Sci 14:9803–9819

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Song GC, Ryu CM (2018) Evidence for Volatile Memory in Plants: Boosting Defence Priming through the Recurrent Application of Plant Volatiles. Mol. cells 41(8):724

    Google Scholar 

  • Song GC, Riu M, Ryu C-M (2019) Beyond the two compartments Petri-dish: optimising growth promotion and induced resistance in cucumber exposed to gaseous bacterial volatiles in a miniature greenhouse system. Plant Methods 15:9

    Article  PubMed  PubMed Central  Google Scholar 

  • Spinelli F, Cellini A, Vanneste J, Rodriguez-Estrada M, Costa G, Savioli S, Harren FM, Cristescu S (2012) Emission of volatile compounds by Erwinia amylovora: biological activity in vitro and possible exploitation for bacterial identification. Trees 26:141–152

    Article  CAS  Google Scholar 

  • Spinelli F, Costa G, Rondelli E, Busi S, Vanneste JL, Rodriguez EMT, Savioli S, Harren FJM, Crespo E, Cristescu SM (2011) Emission of volatiles during the pathogenic interaction between Erwinia amylovora and Malus domestica. Acta Hortic (ISHS) 896:55–63

    Article  CAS  Google Scholar 

  • Spinelli F, Noferini M, Vanneste JL, Costa G (2010) Potential of the electronic-nose for the diagnosis of bacterial and fungal diseases in fruit trees. EPPO Bull 40:59–67

    Article  Google Scholar 

  • Tahir JAS, Gu Q, Wu J, Niu Y, Huo R, Gao X (2017a) Bacillus volatiles adversely affect the physiology and ultra-structure of Ralstonia solanacearum and induce systemic resistance in tobacco against bacterial wilt. Sci Rep 7:40481

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tahir JAS, Gu Q, Wu J, Raza W, Hanif A, Wu L, Colman MV, Gao X (2017b) Plant growth promotion by volatile organic compounds produced by Bacillus subtilis SYST2. Front Microbiol 8:171

    Article  PubMed  PubMed Central  Google Scholar 

  • Tahir JAS, Gu Q, Wu H, Raza W, Safdar A, Huang Z, Rajer FU, Gao X (2017c) Effect of volatile compounds produced by Ralstonia solanacearum on plant growth promoting and systemic resistance inducing potential of Bacillus volatiles. BMC Plant Biol 17:133

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tenorio-Salgado S, Tinoco R, Vazquez-Duhalt R, Caballero-Mellado J, Perez-Rueda E (2013) Identification of volatile compounds produced by the bacterium Burkholderia tropica that inhibit the growth of fungal pathogens. Bioengineered 4:236–243

    Article  PubMed  PubMed Central  Google Scholar 

  • Ting A, Mah S, Tee C (2011) Detection of potential volatile inhibitory compounds produced by endobacteria with biocontrol properties towards Fusarium oxysporum f. sp. cubense race 4. World J Microbiol Biotechnol 27:229–235

    Article  Google Scholar 

  • Van Der Kooij LAW, Kok LJD, Stulen I (1999) Biomass production and carbohydrate content of Arabidopsis thaliana at atmospheric CO2 concentrations from 390 to 1680 μl l-1. Plant Biol 1:482–486

    Article  Google Scholar 

  • Velázquez-Becerra C, Macías-Rodríguez L, López-Buci J, Altamirano-Hernández J, Flores-Cortez I, Valencia-Cantero E (2011) A volatile organic compound analysis from Arthrobacter agilis identifies dimethylhexadecylamine, an amino-containing lipid modulating bacterial growth and Medicago sativa morphogenesis in vitro. Plant Soil 339:329–340

    Article  CAS  Google Scholar 

  • Velázquez-Becerra C, Macías-Rodríguez L, López-Bucio J, Flores-Cortez I, Santoyo G, Hernández-Soberano C, Valencia-Cantero E (2013) The rhizobacterium Arthrobacter agilis produces dimethylhexadecylamine, a compound that inhibits growth of phytopathogenic fungi in vitro. Protoplasma 250:1251–1262

    Article  CAS  PubMed  Google Scholar 

  • Velivelli SL, Sessitch A, Doyle Prestwich B (2014) The role of microbial inoculants in integrated crop management systems. Potato Res 57:291–309

    Article  Google Scholar 

  • Velivelli SL, Kromann P, Lojan P, Rojas M, Franco J, Suarez JP, Doyle Prestwich B (2015) Identification of mVOCs from Andean rhizobacteria and field evaluation of bacterial and mycorrhizal inoculants on growth of potato in its center of origin. Microb Ecol 69:652–667

    Article  CAS  PubMed  Google Scholar 

  • Vespermann A, Kai M, Piechulla B (2007) Rhizobacterial volatiles affect the growth of fungi and Arabidopsis thaliana. Appl Environ Microbiol 73:5639–5641

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Voisard C, Keel C, Haas D, Defago G (1989) Cyanide production by Pseudomonas fluorescens helps suppress black root rot of tobacco under gnotobiotic conditions. EMBO J 8:351–358

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wan M, Li G, Zhang J, Jiang D, Huang H-C (2008) Effect of volatile substances of Streptomyces platensis F-1 on control of plant fungal diseases. Biol Control 46:552–559

    Article  Google Scholar 

  • Ward JK, Strain BR (1999) Elevated CO2 studies: past, present and future. Tree Physiol 19:211–220

    Article  PubMed  Google Scholar 

  • Weise T, Kai M, Gummesson A, Troeger A, Von Reuss S, Piepenborn S, Kosterka F, Sklorz M, Zimmermann R, Francke W, Piechulla B (2012) Volatile organic compounds produced by the phytopathogenic bacterium Xanthomonas campestris pv. vesicatoria 85-10. Beilstein J Org Chem 8:579–596

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Weise T, Kai M, Piechulla B (2013) Bacterial ammonia causes significant plant growth inhibition. PLoS One 8:e63538

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Weisskopf L, Ryu CM, Raaijmakers JM, Garbeva P (2016) Smelly fumes-volatile-mediated communication between bacteria and other organisms. Front. Microbiol. 7

    Google Scholar 

  • Xie X, Zhang H, Pare PW (2009) Sustained growth promotion in Arabidopsis with long-term exposure to the beneficial soil bacterium Bacillus subtilis (GB03). Plant Signal Behav 4:948–953

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang L-L, Huang Y, Liu J, Ma L, Mo M-H, Li W-J, Yang F-X (2012) Lysinibacillus mangiferahumi sp. nov., a new bacterium producing nematicidal volatiles. Antonie Van Leeuwenhoek 102:53–59

    Article  CAS  PubMed  Google Scholar 

  • Yaoyao E, Yuan J, Yang F, Wang L, Ma J, Li J, Pu X, Raza W, Hwang Q, Shen Q (2017) PGPR strain Paenibacillus polymyxa SQR-21 potentially benefts watermelon growth by re-shaping root protein expression. AMB Expr 7:104

    Article  CAS  Google Scholar 

  • Yu SM, Lee Y (2013) Plant growth promoting rhizobacterium Proteus vulgaris JBLS202 stimulates the seedling growth of Chinese cabbage through indole emission. Plant Soil 370:485–495

    Article  CAS  Google Scholar 

  • Yuan J, Raza W, Shen Q, Huang Q (2012) Antifungal activity of Bacillus amyloliquefaciens NJN-6 volatile compounds against Fusarium oxysporum f. sp. cubense. Appl Environ Microbiol 78:5942–5944

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yuan J, Zhao M, Li R, Huang Q, Raza W, Rensing C, Shen Q (2017) Microbial volatile compounds alter the soil microbial community. Environ Sci Pollut Res 24:22485–22493

    Article  CAS  Google Scholar 

  • Zhang H, Kim MS, Sun Y, Dowd SE, Shi H, Paré PW (2008a) Soil bacteria confer plant salt tolerance by tissue-specific regulation of the sodium transporter HKT1. Mol Plant Microbe Interact 21:737–744

    Article  CAS  PubMed  Google Scholar 

  • Zhang H, Kim MS, Krishnamachari V, Payton P, Sun Y, Grimson M, Farag MA, Ryu CM, Allen R, Melo IS, Pare PW (2007) Rhizobacterial volatile emissions regulate auxin homeostasis and cell expansion in Arabidopsis. Planta 226:839–851

    Article  CAS  PubMed  Google Scholar 

  • Zhang H, Sun Y, Xie X, Kim MS, Dowd SE, Paré PW (2009) A soil bacterium regulates plant acquisition of iron via deficiency-inducible mechanisms. Plant J 58:568–577

    Article  CAS  PubMed  Google Scholar 

  • Zhang H, Xie X, Kim MS, Kornyeyev DA, Holaday S, Pare PW (2008b) Soil bacteria augment Arabidopsis photosynthesis by decreasing glucose sensing and abscisic acid levels in planta. Plant J 56:264–273

    Article  CAS  PubMed  Google Scholar 

  • Zhang X, Li B, Wang Y, Guo Q, Lu X, Li S, Ma P (2013) Lipopeptides, a novel protein, and volatile compounds contribute to the antifungal activity of the biocontrol agent Bacillus atrophaeus CAB-1. Appl Microbiol Biotechnol 97:9525–9534

    Article  CAS  PubMed  Google Scholar 

  • Zhao L-J, Yang X-N, Li X-Y, Mu W, Liu F (2011) Antifungal, insecticidal and herbicidal properties of volatile components from Paenibacillus polymyxa strain BMP-11. Agric Sci China 10:728–736

    Article  CAS  Google Scholar 

  • Zou C, Li Z, Yu D (2010) Bacillus megaterium strain XTBG34 promotes plant growth by producing 2-pentylfuran. J Microbiol 48:460–466

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Barbara Doyle Prestwich .

Editor information

Editors and Affiliations

Ethics declarations

Author(s) have no conflict of interest

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Heenan-Daly, D., Velivelli, S.L.S., Prestwich, B.D. (2019). The Role of Rhizobacterial Volatile Organic Compounds in a Second Green Revolution—The Story so Far. In: Maheshwari, D., Dheeman, S. (eds) Field Crops: Sustainable Management by PGPR. Sustainable Development and Biodiversity, vol 23. Springer, Cham. https://doi.org/10.1007/978-3-030-30926-8_8

Download citation

Publish with us

Policies and ethics