Skip to main content

Thermo-Analytical Characterization of Various Biomass Feedstocks for Assessments of Light Gaseous Compounds and Solid Residues

  • Conference paper
  • First Online:
Computational and Experimental Approaches in Materials Science and Engineering (CNNTech 2018)

Abstract

Thermo-analytical characterization of selected biomasses (agricultural waste and wood biomass feedstock) through the pyrolysis process was performed under dynamic conditions. Slow pyrolysis (carbonization) regime (with a heating rate below 50 °C min−1) was selected because it favours the residual solid (bio-carbon/bio-char) in the higher yields (change in the surface area of bio-char with pyrolysis conditions was dependent on the type of biomass feedstock). Comparison of results and discussions related to obtained percentage pyro char yields from thermo-chemical conversion of biomass feedstocks were generated from simultaneous thermal analysis (STA) (TGA-DTG-DTA apparatus). The analysis of gaseous products of pyrolysis was carried out using mass spectrometry (MS) technique. Releasing of the light gaseous compounds (mainly CO, CO2, CH4, and H2 non-condensable gases) was monitored simultaneously with TGA measurements. Discussion related to this issue was performed from the aspect of the syngas production, as well as the versatility of selected biomasses in the gasification process where the various gasifying agent may be in use.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Nordås, R., Gleditsch, N.P.: Climate change and conflict. Political Geogr. 26(6), 627–638 (2007)

    Article  Google Scholar 

  2. Stoeglehner, G., Narodoslawsky, M.: Implementing ecological foot printing in decision-making processes. Land Use Policy 25(3), 421–431 (2008)

    Article  Google Scholar 

  3. Upreti, B.R., van der Horst, D.: National renewable energy policy and local opposition in the UK: the failed development of a biomass electricity plant. Biomass Bioenergy 26(1), 61–69 (2004)

    Article  Google Scholar 

  4. Karakosta, C., Doukas, H., Flouri, M., Dimopoulou, S., Papadopoulou, A.G., Psarras, J.: Review and analysis of renewable energy perspectives in Serbia. Int. J. Energy Environ. 2(1), 71–84 (2011)

    Google Scholar 

  5. Cherubini, F.: The biorefinery concept: using biomass instead of oil for producing energy and chemicals. Energy Convers. Manage. 51(7), 1412–1421 (2010)

    Article  Google Scholar 

  6. Hosseini, S.E., Wahid, M.A.: Hydrogen production from renewable and sustainable energy resources: promising green energy carrier for clean development. Renew. Sustain. Energy Rev. 57, 850–866 (2016)

    Article  Google Scholar 

  7. Dodić, S.N., Vučurović, D.G., Popov, S.D., Dodić, J.M., Ranković, J.A.: Cleaner bioprocesses for promoting zero-emission biofuels production in Vojvodina. Renew. Sustain. Energy Rev. 14(9), 3242–3246 (2010)

    Article  Google Scholar 

  8. Naik, S.N., Goud, V.V., Rout, P.K., Dalai, A.K.: Production of first- and second-generation biofuels: a comprehensive review. Renew. Sustain. Energy Rev. 14(2), 578–597 (2010)

    Article  Google Scholar 

  9. Balat, M., Balat, H.: Recent trends in global production and utilization of bio-ethanol fuel. Appl. Energy 86(11), 2273–2282 (2009)

    Article  Google Scholar 

  10. McKendry, P.: Energy production from biomass (part 1): overview of biomass. Biores. Technol. 83(1), 37–46 (2002)

    Article  Google Scholar 

  11. Wolfsmayr, U.J., Rauch, P.: The primary forest fuel supply chain: a literature review. Biomass Bioenergy 60, 203–221 (2014)

    Article  Google Scholar 

  12. Caillé, A., Al-Moneef, M., de Castro, F.B., Bundgaard-Jensen, A., Fall, A., de Medeiros, N.F., Jain, C.P., Kim, Y.D., Nadeau, M.J., Testa, C., Teyssen, J.: Deciding the future: energy policy scenarios to 2050. World Energy Council (2007)

    Google Scholar 

  13. Demirbas, A.: Biorefinery technologies for biomass upgrading. Energy Sources Part A 32(16), 1547–1558 (2010)

    Article  Google Scholar 

  14. Sharma, R.K., Wooten, J.B., Baliga, V.L., Lin, X., Chan, W.G., Hajaligol, M.R.: Characterization of chars from pyrolysis of lignin. Fuel 83(11–12), 1469–1482 (2004)

    Article  Google Scholar 

  15. Alakangas, E.: European standards for fuel specification and classes of solid biofuels. Solid Biofuels for Energy, pp. 21–41. Springer, London (2011)

    Chapter  Google Scholar 

  16. Janković, B., Manić, N., Stojiljković, D., Jovanović, V.: TSA-MS characterization and kinetic study of the pyrolysis process of various types of biomass based on the Gaussian multi-peak fitting and peak-to-peak approaches. Fuel 234, 447–463 (2018)

    Article  Google Scholar 

  17. Ebeling, J.M., Jenkins, B.M.: Physical and chemical properties of biomass fuels. Trans. ASAE 28(3), 898–902 (1985)

    Article  Google Scholar 

  18. Van Loo, S., Koppejan, J.: The Handbook of Biomass Combustion and Co-firing, pp. 1–464. Earthscan Publications Ltd., London (2008). ISBN 9781849773041

    Google Scholar 

  19. Tonbul, Y.: Pyrolysis of pistachio shell as a biomass. J. Therm. Anal. Calorim. 91(2), 641–647 (2008)

    Article  Google Scholar 

  20. McKendry, P.: Energy production from biomass (part 1): overview of biomass. Bioresour. Technol. 83, 37–46 (2002)

    Article  Google Scholar 

  21. Grønli, M.G., Várhegyi, G., Di Blasi, C.: Thermogravimetric analysis and devolatilization kinetics of wood. Ind. Eng. Chem. Res. 41(17), 4201–4208 (2002)

    Article  Google Scholar 

  22. Yang, G., Jaakkola, P.: Wood Chemistry and Isolation of Extractives from Wood, pp. 3–47. Saimaa University of Applied Sciences, Literature study for BIOTULI Project (2011)

    Google Scholar 

  23. Rinta-Paavola, A., Hostikka, S.: A model for pyrolysis and oxidation of two common structural timbers. In: 1. Forum Wood Building Baltic 2019, pp. 1–10 (2019)

    Google Scholar 

  24. Varma, A.K., Mondal, P.: Pyrolysis of pine needles: effects of process parameters on products yield and analysis of products. J. Therm. Anal. Calorim. 131(3), 2057–2072 (2018)

    Article  Google Scholar 

  25. Radojević, M., Janković, B., Jovanović, V., Stojiljković, D., Manić, N.: Comparative pyrolysis kinetics of various biomasses based on model-free and DAEM approaches improved with numerical optimization procedure. PLoS ONE 13(10), e0206657 (2018). https://doi.org/10.1371/journal.pone.0206657

    Article  Google Scholar 

  26. Janković, B.: The pyrolysis process of wood biomass samples under isothermal experimental conditions - energy density considerations: application of the distributed apparent activation energy model with a mixture of distribution functions. Cellulose 21, 2285–2314 (2014)

    Article  Google Scholar 

  27. Sasaki, C., Kurosumi, A., Yamashita, Y., Mtui, G., Nakamura, Y.: Xylitol production from dilute-acid hydrolysis of bean group shells, In: Mendez-Vilas, A. (ed.) Microorganisms in Industry and Environment. From Scientific and Industrial Research to Consumer Products, pp. 605–613. World Scientific Publishing Co. Pte. Ltd., Singapore (2011). ISBN-13 978-981-4322-10-2

    Google Scholar 

  28. Laine, C.: Structures of hemicelluloses and Pectins in wood and pulp. Dissertation for the degree of Doctor of Science, Helsinki University of Technology, Department of Chemical Technology, Oy Keskuslaboratorio, Espoo, Finland, pp. 1–63 (2005). ISSN 1457-6252

    Google Scholar 

  29. Peters, B.: Prediction of pyrolysis of pistachio shells based on its components, hemicellulose, cellulose and lignin. Fuel Process. Technol. 92(10), 1993–1998 (2011)

    Article  Google Scholar 

  30. Janković, B.: The comparative kinetic analysis of Acetocell and Lignoboost® lignin pyrolysis: the estimation of the distributed reactivity models. Bioresour. Technol. 102(20), 9763–9771 (2011)

    Article  Google Scholar 

  31. Collard, F.-X., Blin, J.: A review on pyrolysis of biomass constituents: mechanisms and composition of the products obtained from the conversion of cellulose, hemicelluloses and lignin. Renew. Sustain. Energy Rev. 38, 594–608 (2014)

    Article  Google Scholar 

  32. Liu, Q., Wang, S., Zheng, Y., Luo, Z., Cen, K.: Mechanism study of wood lignin pyrolysis by using TG-FTIR analysis. J. Anal. Appl. Pyrol. 82, 170–177 (2008)

    Article  Google Scholar 

  33. Jakab, E., Faix, O., Till, F., Székely, T.: Thermogravimetry/mass spectrometry study of six lignins within the scope of an international round robin test. J. Anal. Appl. Pyrol. 35(2), 167–179 (1995)

    Article  Google Scholar 

  34. Nakamura, T., Kawamoto, H., Saka, S.: Pyrolysis behavior of Japanese cedar wood lignin studied with various modeldimers. J. Anal. Appl. Pyrol. 81, 173–182 (2008)

    Article  Google Scholar 

  35. Faravelli, T., Frassoldati, A., Migliavacca, G., Ranzi, E.: Detailed kinetic modeling of the thermal degradation of lignins. Biomass Bioenergy 34, 290–301 (2010)

    Article  Google Scholar 

  36. Sharma, R.K., Wooten, J.B., Baliga, V.L., Lin, X., Chan, W.G., Hajaligol, M.R.: Characterization of chars from pyrolysis of lignin. Fuel 83, 1469–1482 (2004)

    Article  Google Scholar 

  37. Wang, S., Wang, K., Liu, Q., Gu, Y., Luo, Z., Cen, K., Fransson, T.: Comparison of the pyrolysis behavior of lignins from different tree species. Biotechnol. Adv. 27(5), 562–567 (2009)

    Article  Google Scholar 

  38. Manić, N.G., Janković, B.Ž., Stojiljković, D.D., Jovanović, V.V., Radojević, M.B.: TGA-DSC-MS analysis of pyrolysis process of various agricultural residues. Thermal Sci. (2018). https://doi.org/10.2298/TSCI180118182M

    Article  Google Scholar 

  39. Wang, S.R., Liu, Q., Liao, Y.F., Luo, Z.Y., Cen, K.F.: A study on the mechanism research on cellulose pyrolysis under catalysis of metallic salts. Korean J. Chem. Eng. 24(2), 336–340 (2007)

    Article  Google Scholar 

  40. Wu, Z., Yang, W., Li, Y., Yang, B.: Co-pyrolysis behavior of microalgae biomass and low-quality coal: products distributions, char-surface morphology, and synergistic effects. Bioresour. Technol. 255, 238–245 (2018)

    Article  Google Scholar 

  41. Janković, B., Manić, N., Dodevski, V., Popović, J., Rusmirović, J.D., Tošić, M.: Characterization analysis of poplar fluff pyrolysis products. Multi-component kinetic study. Fuel 238, 111–128 (2019)

    Article  Google Scholar 

  42. Widyawati, M., Church, T.L., Florin, N.H., Harris, A.T.: Hydrogen synthesis from biomass pyrolysis with in situ carbon dioxide capture using calcium oxide. Int. J. Hydrogen Energy 36(8), 4800–4813 (2011)

    Article  Google Scholar 

  43. Boumlin, S., Broust, F., Bazer-Bachi, F., Bourdeaux, T., Herbinet, O., Ndiaye, F.T., Ferrer, M., Lede, J.: Production of hydrogen by lignins fast pyrolysis. Int. J. Hydrogen Energy 31(15), 2179–2192 (2006)

    Article  Google Scholar 

  44. Okutucu, Ç.: Pyrolysis of Pistachio Shell. Master of Science Thesis, EGE University Graduate School of Natural and Applied Sciences, Department of Chemistry, Barnova-Izmir, September 2010, pp. 1–68 (2010)

    Google Scholar 

  45. Hao, Q.L., Wang, C., Lu, D.Q., Wang, Y., Li, D., Li, G.J.: Production of hydrogen-rich gas from plant biomass by catalytic pyrolysis at low temperature. Int. J. Hydrogen Energy 35, 8884–8890 (2010)

    Article  Google Scholar 

  46. Yang, H.P., Yan, R., Chen, H.P., Lee, D.H., Liang, D.T., Zheng, C.G.: Pyrolysis of palm oil wastes for enhanced production of hydrogen rich gases. Fuel Process. Technol. 87, 935–942 (2006)

    Article  Google Scholar 

  47. EN 14961-1. Solid biofuels - Fuel specifications and classes - Part 1: General requirements, 2010

    Google Scholar 

  48. Hakkila, P.: Utilization of Residual Forest Biomass, pp. 1–516. Wood Science. Springer, Heidelberg (1989)

    Chapter  Google Scholar 

  49. Kim, D.: Physico-chemical conversion of lignocellulose: inhibitor effects and detoxification strategies: a mini review. Molecules 23(2), 309 (2018). https://doi.org/10.3390/molecules23020309

    Article  Google Scholar 

  50. Shafiei, M., Karimi, K., Taherzadeh, M.J.: Pretreatment of spruce and oak by N-methylmorpholine-N-oxide (NMMO) for efficient conversion of their cellulose to ethanol. Bioresour. Technol. 101, 4914–4918 (2010)

    Article  Google Scholar 

  51. Salasinska, K., Polka, M., Gloc, M., Ryszkowska, J.: Natural fiber composites: the effect of the kind and content of filler on the dimensional and fire stability of polyolefin-based composites. Polimery 61(4), 255–265 (2016)

    Article  Google Scholar 

  52. Chen, S., Meng, A., Long, Y., Zhou, H., Li, Q., Zhang, Y.: TGA pyrolysis and gasification of combustible municipal solid waste. J. Energy Inst. 88, 332–343 (2015)

    Article  Google Scholar 

Download references

Acknowledgement

Authors would like to acknowledge the financial support of the Ministry of Education, Science and Technological Development of the Republic of Serbia under the Projects 172015, 172045 and III42010.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bojan Jankovic .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Pijovic, M.M., Jankovic, B., Stojiljkovic, D., Radojevic, M.B., Manic, N. (2020). Thermo-Analytical Characterization of Various Biomass Feedstocks for Assessments of Light Gaseous Compounds and Solid Residues. In: Mitrovic, N., Milosevic, M., Mladenovic, G. (eds) Computational and Experimental Approaches in Materials Science and Engineering. CNNTech 2018. Lecture Notes in Networks and Systems, vol 90. Springer, Cham. https://doi.org/10.1007/978-3-030-30853-7_9

Download citation

Publish with us

Policies and ethics