Skip to main content

Surface Modification of Dental Materials and Hard Tissues Using Nonthermal Atmospheric Plasma

  • Conference paper
  • First Online:
Book cover Computational and Experimental Approaches in Materials Science and Engineering (CNNTech 2018)

Part of the book series: Lecture Notes in Networks and Systems ((LNNS,volume 90))

  • 618 Accesses

Abstract

Research of nonthermal atmospheric plasma (NTAP) for dental applications has been increasing in recent years. This paper presents a literature review of potential use of NTAP for treatment of surfaces of dental materials and hard dental tissues. The aim of NTAP interaction with dental materials and tissues is surface modification for stable and durable material-to-material or material-to-tissue bonds. Reactive particles in NTAP and various mixtures of gasses increase hydrophilicity of material surface, which is known to be hydrophobic in implants, ceramics or dental composites, with or without roughness changes. Adhesion of cells to implant surface was shown to improve after NTAP treatment, thereby promoting successful osseointegration. Bonding ceramic materials to the prepared surfaces of teeth or fiber/metal posts was shown to improve after NTAP treatment. Hard dental tissues achieve primarily micromechanical bonds with composite materials using dental adhesives. Increased organic content in the form of collagen fibrils and residual water pose a problem for achieving adequate and long-term adhesive-dentin bonds. This problem has not been solved with current adhesive application protocols. It was recently shown that application of NTAP improves the hydrophilicity of dentin surface and changes its polarity, which can contribute to better distribution of adhesive resin and deeper penetration into the hybrid layer. Previous studies pointed to similar or better initial adhesive bonds with dentin. However, adhesive-dentin bonds are subject to degradation in the long-term also after NTAP treatment suggesting the need for further optimization of NTAP for application on dentin.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Pashley, D.H., Tay, F.R., Breschi, L., Tjaderhane, L., Carvalho, R.M., Carrilho, M., Tezvergil-Mutluay, A.: State of the art etch-and-rinse adhesives. Dent. Mater. 27, 1–16 (2011). https://doi.org/10.1016/j.dental.2010.10.016. S0109-5641(10)00459-8 [pii]

    Article  Google Scholar 

  2. Van Meerbeek, B., Yoshihara, K., Yoshida, Y., Mine, A., De Munck, J., Van Landuyt, K.L.: State of the art of self-etch adhesives. Dent. Mater. 27, 17–28 (2011). https://doi.org/10.1016/j.dental.2010.10.023. S0109-5641(10)00466-5 [pii]

    Article  Google Scholar 

  3. Miletic, V., Sauro, S.: Adhesion to tooth tissues. In: Miletic, V. (ed.) Dental Composite Materials for Direct Restorations, pp. 199–218. Springer, Cham (2018)

    Google Scholar 

  4. Nakabayashi, N., Pashley, D.H.: Hybridization of Dental Hard Tissues. Quintessence Publishing Co Ltd., Tokyo (1998)

    Google Scholar 

  5. Santini, A., Miletic, V.: Comparison of the hybrid layer formed by Silorane adhesive, one-step self-etch and etch and rinse systems using confocal micro-Raman spectroscopy and SEM. J. Dent. 36, 683–691 (2008)

    Article  Google Scholar 

  6. Santini, A., Miletic, V.: Quantitative micro-Raman assessment of dentine demineralization, adhesive penetration, and degree of conversion of three dentine bonding systems. Eur. J. Oral Sci. 116, 177–183 (2008)

    Article  Google Scholar 

  7. Miletic, V., Santini, A., Trkulja, I.: Quantification of monomer elution and carbon-carbon double bonds in dental adhesive systems using HPLC and micro-Raman spectroscopy. J. Dent. 37, 177–184 (2009)

    Article  Google Scholar 

  8. Ye, Q., Wang, Y., Spencer, P.: Nanophase separation of polymers exposed to simulated bonding conditions. J. Biomed. Mater. Res. B Appl. Biomater. 88, 339–348 (2008)

    Google Scholar 

  9. De Munck, J., Van Landuyt, K., Peumans, M., Poitevin, A., Lambrechts, P., Braem, M., Van Meerbeek, B.: A critical review of the durability of adhesion to tooth tissue: methods and results. J. Dent. Res. 84, 118–132 (2005)

    Article  Google Scholar 

  10. Mazzoni, A., Scaffa, P., Carrilho, M., Tjaderhane, L., Di Lenarda, R., Polimeni, A., Tezvergil-Mutluay, A., Tay, F.R., Pashley, D.H., Breschi, L.: Effects of etch-and-rinse and self-etch adhesives on dentin MMP-2 and MMP-9. J. Dent. Res. 92, 82–86 (2013). https://doi.org/10.1177/0022034512467034. 0022034512467034 [pii]

    Article  Google Scholar 

  11. Mattiello, R.D.L., Coelho, T.M.K., Insaurralde, E., Coelho, A.A.K., Terra, G.P., Kasuya, A.V.B., Favarão, I.N., Gonçalves, L.d.S., Fonseca, R.B.: A review of surface treatment methods to improve the adhesive cementation of zirconia-based ceramics. ISRN Biomater. 2013, 10 (2013). https://doi.org/10.5402/2013/185376

    Article  Google Scholar 

  12. Della Bona, A., Borba, M., Benetti, P., Pecho, O.E., Alessandretti, R., Mosele, J.C., Mores, R.T.: Adhesion to dental ceramics. Curr. Oral Health Rep. 1, 232–238 (2014). https://doi.org/10.1007/s40496-014-0030-y

    Article  Google Scholar 

  13. Monticelli, F., Osorio, R., Mazzitelli, C., Ferrari, M., Toledano, M.: Limited decalcification/diffusion of self-adhesive cements into dentin. J. Dent. Res. 87, 974–979 (2008). https://doi.org/10.1177/154405910808701012

    Article  Google Scholar 

  14. Ferracane, J.L., Stansbury, J.W., Burke, F.J.: Self-adhesive resin cements - chemistry, properties and clinical considerations. J. Oral Rehabil. 38, 295–314 (2011). https://doi.org/10.1111/j.1365-2842.2010.02148.x

    Article  Google Scholar 

  15. Ozcan, M., Bernasconi, M.: Adhesion to zirconia used for dental restorations: a systematic review and meta-analysis. J. Adhes. Dent. 17, 7–26 (2015). https://doi.org/10.3290/j.jad.a33525

    Article  Google Scholar 

  16. Novaes Jr., A.B., de Souza, S.L., de Barros, R.R., Pereira, K.K., Iezzi, G., Piattelli, A.: Influence of implant surfaces on osseointegration. Braz. Dent. J. 21, 471–481 (2010)

    Article  Google Scholar 

  17. Chrcanovic, B.R., Kisch, J., Albrektsson, T., Wennerberg, A.: Factors influencing early dental implant failures. J. Dent. Res. 95, 995–1002 (2016). https://doi.org/10.1177/0022034516646098

    Article  Google Scholar 

  18. Rupp, F., Liang, L., Geis-Gerstorfer, J., Scheideler, L., Huttig, F.: Surface characteristics of dental implants: a review. Dent. Mater. 34, 40–57 (2018). https://doi.org/10.1016/j.dental.2017.09.007

    Article  Google Scholar 

  19. Le Guehennec, L., Soueidan, A., Layrolle, P., Amouriq, Y.: Surface treatments of titanium dental implants for rapid osseointegration. Dent. Mater. 23, 844–854 (2007). https://doi.org/10.1016/j.dental.2006.06.025

    Article  Google Scholar 

  20. Fretwurst, T., Nelson, K., Tarnow, D.P., Wang, H.L., Giannobile, W.V.: Is metal particle release associated with peri-implant bone destruction? An emerging concept. J. Dent. Res. 97, 259–265 (2018). https://doi.org/10.1177/0022034517740560

    Article  Google Scholar 

  21. Carrado, A., Perrin-Schmitt, F., Le, Q.V., Giraudel, M., Fischer, C., Koenig, G., Jacomine, L., Behr, L., Chalom, A., Fiette, L., Morlet, A., Pourroy, G.: Nanoporous hydroxyapatite/sodium titanate bilayer on titanium implants for improved osteointegration. Dent. Mater. 33, 321–332 (2017). https://doi.org/10.1016/j.dental.2016.12.013

    Article  Google Scholar 

  22. Madi, M., Zakaria, O., Kasugai, S.: Coated vs uncoated implants: bone defect configurations after progressive peri-implantitis in dogs. J. Oral Implantol. 40, 661–669 (2014). https://doi.org/10.1563/AAID-JOI-D-12-00089

    Article  Google Scholar 

  23. Fridman, A.: Elementary Plasma-Chemical Reactions. Plasma Chemistry, pp. 12–91. Cambridge University Press, Cambridge (2008)

    Google Scholar 

  24. Stoffels, E., Flikweert, A.J., Stoffels, W.W., Kroesen, G.M.W.: Plasma needle: a non-destructive atmospheric plasma source for fine surface treatment of (bio)materials. Plasma Sources Sci. Technol. 11, 383 (2002)

    Article  Google Scholar 

  25. von Woedtke, T., Reuter, S., Masur, K., Weltmann, K.D.: Plasmas for medicine. Phys. Rep. 530, 291–320 (2013)

    Article  Google Scholar 

  26. Liu, Y., Liu, Q., Yu, Q.S., Wang, Y.: Nonthermal atmospheric plasmas in dental restoration. J. Dent. Res. 95, 496–505 (2016). https://doi.org/10.1177/0022034516629425. 0022034516629425 [pii]

    Article  Google Scholar 

  27. Ohl, A., Schröder, K.: Plasma-induced chemical micropatterning for cell culturing applications: a brief review. Surf. Coat. Technol. 116–119, 820–830 (1999)

    Article  Google Scholar 

  28. Bazaka, K., Jacob, M.V., Crawford, R.J., Ivanova, E.P.: Plasma-assisted surface modification of organic biopolymers to prevent bacterial attachment. Acta Biomater. 7, 2015–2028 (2011). https://doi.org/10.1016/j.actbio.2010.12.024

    Article  Google Scholar 

  29. Otitoju, T.A., Ahmad, A.L., Ooi, B.S.: Superhydrophilic (superwetting) surfaces: a review on fabrication and application. J. Ind. Eng. Chem. 47, 19–40 (2017). https://doi.org/10.1016/j.jiec.2016.12.016

    Article  Google Scholar 

  30. Van Oss, C.J., Chaudhury, M.K., Good, R.J.: Interfacial Lifshitz-van der Waals and polar interactions in macroscopic systems. Chem. Rev. 88, 927–941 (1988)

    Article  Google Scholar 

  31. Han, G.J., Chung, S.N., Chun, B.H., Kim, C.K., Oh, K.H., Cho, B.H.: Effect of the applied power of atmospheric pressure plasma on the adhesion of composite resin to dental ceramic. J. Adhes. Dent. 14, 461–469 (2012). https://doi.org/10.3290/j.jad.a25688. 25688 [pii]

  32. Valverde, G.B., Coelho, P.G., Janal, M.N., Lorenzoni, F.C., Carvalho, R.M., Thompson, V.P., Weltemann, K.D., Silva, N.R.: Surface characterisation and bonding of Y-TZP following non-thermal plasma treatment. J. Dent. 41, 51–59 (2013). https://doi.org/10.1016/j.jdent.2012.10.002

    Article  Google Scholar 

  33. Liu, T., Hong, L., Hottel, T., Dong, X., Yu, Q., Chen, M.: Non-thermal plasma enhanced bonding of resin cement to zirconia ceramic. Clin. Plasma Med. 4, 50–55 (2016). https://doi.org/10.1016/j.cpme.2016.08.002

    Article  Google Scholar 

  34. Lee, M.H., Min, B.K., Son, J.S., Kwon, T.Y.: Influence of different post-plasma treatment storage conditions on the shear bond strength of veneering porcelain to zirconia. Materials (Basel) 9 (2016). https://doi.org/10.3390/ma9010043

    Article  Google Scholar 

  35. Cho, B.H., Han, G.J., Oh, K.H., Chung, S.N., Chun, B.H.: The effect of plasma polymer coating using atmospheric-pressure glow discharge on the shear bond strength of composite resin to ceramic. J. Mater. Sci. 46, 2755–2763 (2011). https://doi.org/10.1007/s10853-010-5149-1

    Article  Google Scholar 

  36. Park, C., Yoo, S.H., Park, S.W., Yun, K.D., Ji, M.K., Shin, J.H., Lim, H.P.: The effect of plasma on shear bond strength between resin cement and colored zirconia. J. Adv. Prosthodont. 9, 118–123 (2017). https://doi.org/10.4047/jap.2017.9.2.118

    Article  Google Scholar 

  37. Pott, P.C., Syvari, T.S., Stiesch, M., Eisenburger, M.: Influence of nonthermal argon plasma on the shear bond strength between zirconia and different adhesives and luting composites after artificial aging. J. Adv. Prosthodont. 10, 308–314 (2018). https://doi.org/10.4047/jap.2018.10.4.308

    Article  Google Scholar 

  38. Vilas Boas Fernandes Junior, V., Barbosa Dantas, D.C., Bresciani, E., Rocha Lima Huhtala, M.F.: Evaluation of the bond strength and characteristics of zirconia after different surface treatments. J. Prosthet. Dent. 120, 955–959 (2018). https://doi.org/10.1016/j.prosdent.2018.01.029

    Article  Google Scholar 

  39. Lopes, B.B., Ayres, A.P.A., Lopes, L.B., Negreiros, W.M., Giannini, M.: The effect of atmospheric plasma treatment of dental zirconia ceramics on the contact angle of water. Appl. Adhes. Sci. 2, 17 (2014). https://doi.org/10.1186/2196-4351-2-17

    Article  Google Scholar 

  40. Park, C., Park, S.-W., Yun, K.-D., Ji, M.-K., Kim, S., Yang, Y.P., Lim, H.-P.: Effect of plasma treatment and its post process duration on shear bonding strength and antibacterial effect of dental zirconia. Materials 11, 2233 (2018)

    Article  Google Scholar 

  41. Jha, N., Choi, J.S., Kim, J.H., Jung, R., Choi, E.H., Ryu, J.J., Han, I.: Osteogenic potential of non thermal biocompatible atmospheric pressure plasma treated zirconia: in vitro study. J. Biomater. Tissue Eng. 7, 662–670 (2017). https://doi.org/10.1166/jbt.2017.1626

    Article  Google Scholar 

  42. Yoshinari, M., Matsuzaka, K., Inoue, T.: Surface modification by cold-plasma technique for dental implants—Bio-functionalization with binding pharmaceuticals. Jpn. Dent. Sci. Rev. 47, 89–101 (2011). https://doi.org/10.1016/j.jdsr.2011.03.001

    Article  Google Scholar 

  43. Karaman, O., Kelebek, S., Demirci, E.A., Ibis, F., Ulu, M., Ercan, U.K.: Synergistic effect of cold plasma treatment and rgd peptide coating on cell proliferation over titanium surfaces. Tissue Eng. Regen. Med. 15, 13–24 (2018). https://doi.org/10.1007/s13770-017-0087-5

    Article  Google Scholar 

  44. Duske, K., Koban, I., Kindel, E., Schroder, K., Nebe, B., Holtfreter, B., Jablonowski, L., Weltmann, K.D., Kocher, T.: Atmospheric plasma enhances wettability and cell spreading on dental implant metals. J. Clin. Periodontol. 39, 400–407 (2012). https://doi.org/10.1111/j.1600-051X.2012.01853.x

    Article  Google Scholar 

  45. Seo, H.Y., Kwon, J.S., Choi, Y.R., Kim, K.M., Choi, E.H., Kim, K.N.: Cellular attachment and differentiation on titania nanotubes exposed to air- or nitrogen-based non-thermal atmospheric pressure plasma. PLoS ONE 9, e113477 (2014). https://doi.org/10.1371/journal.pone.0113477

    Article  Google Scholar 

  46. Lee, E.J., Kwon, J.S., Uhm, S.H., Song, D.H., Kim, Y.H., Choi, E.H., Kim, K.N.: The effects of non-thermal atmospheric pressure plasma jet on cellular activity at SLA-treated titanium surfaces. Curr. Appl. Phys. 13, S36–S41 (2013). https://doi.org/10.1016/j.cap.2012.12.023

    Article  Google Scholar 

  47. Lee, J.H., Jeong, W.S., Seo, S.J., Kim, H.W., Kim, K.N., Choi, E.H., Kim, K.M.: Non-thermal atmospheric pressure plasma functionalized dental implant for enhancement of bacterial resistance and osseointegration. Dent. Mater. 33, 257–270 (2017). https://doi.org/10.1016/j.dental.2016.11.011

    Article  Google Scholar 

  48. Jeong, W.S., Kwon, J.S., Lee, J.H., Uhm, S.H., Ha Choi, E., Kim, K.M.: Bacterial attachment on titanium surfaces is dependent on topography and chemical changes induced by nonthermal atmospheric pressure plasma. Biomed. Mater. 12, 045015 (2017). https://doi.org/10.1088/1748-605X/aa734e

    Article  Google Scholar 

  49. Lee, M.J., Kwon, J.S., Jiang, H.B., Choi, E.H., Park, G., Kim, K.M.: The antibacterial effect of non-thermal atmospheric pressure plasma treatment of titanium surfaces according to the bacterial wall structure. Sci. Rep. 9, 1938 (2019). https://doi.org/10.1038/s41598-019-39414-9

  50. Yoo, E.M., Uhm, S.H., Kwon, J.S., Choi, H.S., Choi, E.H., Kim, K.M., Kim, K.N.: The study on inhibition of planktonic bacterial growth by non-thermal atmospheric pressure plasma jet treated surfaces for dental application. J. Biomed. Nanotechnol. 11, 334–341 (2015)

    Article  Google Scholar 

  51. Koban, I., Holtfreter, B., Hubner, N.O., Matthes, R., Sietmann, R., Kindel, E., Weltmann, K.D., Welk, A., Kramer, A., Kocher, T.: Antimicrobial efficacy of non-thermal plasma in comparison to chlorhexidine against dental biofilms on titanium discs in vitro - proof of principle experiment. J. Clin. Periodontol. 38, 956–965 (2011). https://doi.org/10.1111/j.1600-051X.2011.01740.x

    Article  Google Scholar 

  52. Giro, G., Tovar, N., Witek, L., Marin, C., Silva, N.R., Bonfante, E.A., Coelho, P.G.: Osseointegration assessment of chairside argon-based nonthermal plasma-treated Ca-P coated dental implants. J. Biomed. Mater. Res. A 101, 98–103 (2013). https://doi.org/10.1002/jbm.a.34304

    Article  Google Scholar 

  53. Teixeira, H.S., Marin, C., Witek, L., Freitas Jr., A., Silva, N.R., Lilin, T., Tovar, N., Janal, M.N., Coelho, P.G.: Assessment of a chair-side argon-based non-thermal plasma treatment on the surface characteristics and integration of dental implants with textured surfaces. J. Mech. Behav. Biomed. Mater. 9, 45–49 (2012). https://doi.org/10.1016/j.jmbbm.2012.01.012

    Article  Google Scholar 

  54. Shon, W.J., Chung, S.H., Kim, H.K., Han, G.J., Cho, B.H., Park, Y.S.: Peri-implant bone formation of non-thermal atmospheric pressure plasma-treated zirconia implants with different surface roughness in rabbit tibiae. Clin. Oral Implant Res. 25, 573–579 (2014). https://doi.org/10.1111/clr.12115

    Article  Google Scholar 

  55. Chen, M., Zhang, Y., Sky Driver, M., Caruso, A.N., Yu, Q., Wang, Y.: Surface modification of several dental substrates by non-thermal, atmospheric plasma brush. Dent. Mater. 29, 871–880 (2013). https://doi.org/10.1016/j.dental.2013.05.002. S0109-5641(13)00119-X [pii]

    Article  Google Scholar 

  56. Lehmann, A., Rueppell, A., Schindler, A., Zyla, I.M., Seifert, H.J., Nothdurft, F., Hannig, M., Rupf, S.: Modification of enamel and dentin surfaces by non-thermal atmospheric plasma. Plasma Process. Polym. 10, 262–270 (2013)

    Article  Google Scholar 

  57. Koban, I., Duske, K., Jablonowski, L., Schroeder, K., Nebe, B., Sietmann, R., Weltmann, K.D., Hubner, N.O., Kramer, A., Kocher, T.: Atmospheric plasma enhances wettability and osteoblast spreading on dentin in vitro: proof-of-principle. Plasma Process. Polym. 8, 975–982 (2011)

    Article  Google Scholar 

  58. Dong, X., Chen, M., Wang, Y., Yu, Q.: A mechanistic study of plasma treatment effects on demineralized dentin surfaces for improved adhesive/dentin interface bonding. Clin. Plasma Med. 2, 11–16 (2014). https://doi.org/10.1016/j.cpme.2014.04.001

    Article  Google Scholar 

  59. Hirata, R., Teixeira, H., Ayres, A.P., Machado, L.S., Coelho, P.G., Thompson, V.P., Giannini, M.: Long-term adhesion study of self-etching systems to plasma-treated dentin. J. Adhes. Dent. 17, 227–233 (2015). https://doi.org/10.3290/j.jad.a34138

    Article  Google Scholar 

  60. Šantak, V., Vesel, A., Zaplotnik, R., Bišćan, M., Milošević, S.: Surface treatment of human hard dental tissues with atmospheric pressure plasma jet. Plasma Chem. Plasma Process. 37, 401–413 (2017). https://doi.org/10.1007/s11090-016-9777-3

    Article  Google Scholar 

  61. Zhu, X., Guo, H., Zhou, J., Zhang, X., Chen, J., Li, J., Li, H., Tan, J.: Influences of the cold atmospheric plasma jet treatment on the properties of the demineralized dentin surfaces. Plasma Sci. Technol. 20, 044010 (2018). https://doi.org/10.1088/2058-6272/aaa6be

    Article  Google Scholar 

  62. Stasic, J.N., Selakovic, N., Puac, N., Miletic, M., Malovic, G., Petrovic, Z.L., Veljovic, D.N., Miletic, V.: Effects of non-thermal atmospheric plasma treatment on dentin wetting and surface free energy for application of universal adhesives. Clin. Oral Investig. 23, 1383–1396 (2019). https://doi.org/10.1007/s00784-018-2563-2

    Article  Google Scholar 

  63. Ayres, A.P., Freitas, P.H., De Munck, J., Vananroye, A., Clasen, C., Dias, C.D.S., Giannini, M., Van Meerbeek, B.: Benefits of nonthermal atmospheric plasma treatment on dentin adhesion. Oper. Dent. 43, E288–E299 (2018). https://doi.org/10.2341/17-123-L

    Article  Google Scholar 

  64. Zhang, Y., Yu, Q., Wang, Y.: Non-thermal atmospheric plasmas in dental restoration: improved resin adhesive penetration. J. Dent. 42,1033–1042 (2014). https://doi.org/10.1016/j.jdent.2014.05.005. S0300-5712(14)00139-0 [pii]

    Article  Google Scholar 

  65. Zhu, X.M., Zhou, J.F., Guo, H., Zhang, X.F., Liu, X.Q., Li, H.P., Tan, J.G.: Effects of a modified cold atmospheric plasma jet treatment on resin-dentin bonding. Dent. Mater. J. 37, 798–804 (2018). https://doi.org/10.4012/dmj.2017-314

    Article  Google Scholar 

  66. Dong, X., Ritts, A.C., Staller, C., Yu, Q., Chen, M., Wang, Y.: Evaluation of plasma treatment effects on improving adhesive-dentin bonding by using the same tooth controls and varying cross-sectional surface areas. Eur. J. Oral Sci. 121, 355–362 (2013). https://doi.org/10.1111/eos.12052

    Article  Google Scholar 

  67. Ritts, A.C., Li, H., Yu, Q., Xu, C., Yao, X., Hong, L., Wang, Y.: Dentin surface treatment using a non-thermal argon plasma brush for interfacial bonding improvement in composite restoration. Eur. J. Oral Sci. 118, 510–516 (2010). https://doi.org/10.1111/j.1600-0722.2010.00761.x

    Article  Google Scholar 

  68. Dong, X., Li, H., Chen, M., Wang, Y., Yu, Q.: Plasma treatment of dentin surfaces for improving self-etching adhesive/dentin interface bonding. Clin. Plasma Med. 3, 10–16 (2015). https://doi.org/10.1016/j.cpme.2015.05.002

    Article  Google Scholar 

  69. Han, G.J., Kim, J.H., Chung, S.N., Chun, B.H., Kim, C.K., Seo, D.G., Son, H.H., Cho, B.H.: Effects of non-thermal atmospheric pressure pulsed plasma on the adhesion and durability of resin composite to dentin. Eur. J. Oral Sci. 122, 417–423 (2014). https://doi.org/10.1111/eos.12153

    Article  Google Scholar 

  70. Kim, J.H., Han, G.J., Kim, C.K., Oh, K.H., Chung, S.N., Chun, B.H., Cho, B.H.: Promotion of adhesive penetration and resin bond strength to dentin using non-thermal atmospheric pressure plasma. Eur. J. Oral Sci. 124, 89–95 (2016). https://doi.org/10.1111/eos.12246

    Article  Google Scholar 

  71. Ayres, A.P., Bonvent, J.J., Mogilevych, B., Soares, L.E.S., Martin, A.A., Ambrosano, G.M., Nascimento, F.D., Van Meerbeek, B., Giannini, M.: Effect of non-thermal atmospheric plasma on the dentin-surface topography and composition and on the bond strength of a universal adhesive. Eur. J. Oral Sci. 126, 53–65 (2018). https://doi.org/10.1111/eos.12388

    Article  Google Scholar 

  72. Hirata, R., Sampaio, C., Machado, L.S., Coelho, P.G., Thompson, V.P., Duarte, S., Ayres, A.P., Giannini, M.: Short- and long-term evaluation of dentin-resin interfaces formed by etch-and-rinse adhesives on plasma-treated dentin. J. Adhes. Dent. 18, 215–222 (2016). https://doi.org/10.3290/j.jad.a36134. 36134 [pii]

  73. Puač, N., Miletić, M., Mojović, M., Popović-Bijelić, A., Vuković, D., Miličić, B., Maletić, D., Lazović, S., Malović, G., Petrović, Z.L.: Sterilization of bacteria suspensions and identification of radicals deposited during plasma treatment. Open Chem. 13, 332–338 (2015). https://doi.org/10.1515/chem-2015-0041

    Article  Google Scholar 

  74. Miletić, M., Vuković, D., Živanović, I., Dakić, I., Soldatović, I., Maletić, D., Lazović, S., Malović, G., Petrović, Z.L., Puač, N.: Inhibition of methicillin resistant staphylococcus aureus by a plasma needle. Cent. Eur. J. Phys. 12, 160–167 (2014). https://doi.org/10.2478/s11534-014-0437-z

    Article  Google Scholar 

  75. Sladek, R.E., Filoche, S.K., Sissons, C.H., Stoffels, E.: Treatment of Streptococcus mutans biofilms with a nonthermal atmospheric plasma. Lett. Appl. Microbiol. 45, 318–323 (2007). https://doi.org/10.1111/j.1472-765X.2007.02194.x

    Article  Google Scholar 

  76. Rupf, S., Lehmann, A., Hannig, M., Schafer, B., Schubert, A., Feldmann, U., Schindler, A.: Killing of adherent oral microbes by a non-thermal atmospheric plasma jet. J. Med. Microbiol. 59, 206–212 (2010). https://doi.org/10.1099/jmm.0.013714-0

    Article  Google Scholar 

  77. Schaudinn, C., Jaramillo, D., Freire, M.O., Sedghizadeh, P.P., Nguyen, A., Webster, P., Costerton, J.W., Jiang, C.: Evaluation of a nonthermal plasma needle to eliminate ex vivo biofilms in root canals of extracted human teeth. Int. Endod. J. 46, 930–937 (2013). https://doi.org/10.1111/iej.12083

    Article  Google Scholar 

  78. Du, T., Shi, Q., Shen, Y., Cao, Y., Ma, J., Lu, X., Xiong, Z., Haapasalo, M.: Effect of modified nonequilibrium plasma with chlorhexidine digluconate against endodontic biofilms in vitro. J. Endod. 39, 1438–1443 (2013). https://doi.org/10.1016/j.joen.2013.06.027

    Article  Google Scholar 

  79. Chen, M., Zhang, Y., Yao, X., Li, H., Yu, Q., Wang, Y.: Effect of a non-thermal, atmospheric-pressure, plasma brush on conversion of model self-etch adhesive formulations compared to conventional photo-polymerization. Dent. Mater. 28, 1232–1239 (2012). https://doi.org/10.1016/j.dental.2012.09.005

    Article  Google Scholar 

  80. Epaillard, F., Brosse, J.C., Legeay, G.: Plasma-induced polymerization. J. Appl. Polym. Sci. 38, 887–898 (1989)

    Article  Google Scholar 

  81. Santak, V., Zaplotnik, R., Milosevic, S., Klaric, E., Tarle, Z.: Atmospheric pressure plasma jet as an accelerator of tooth bleaching. Acta Stomatol. Croat. 48, 268–278 (2014). https://doi.org/10.15644/asc47/4/4

    Article  Google Scholar 

  82. Claiborne, D., McCombs, G., Lemaster, M., Akman, M.A., Laroussi, M.: Low-temperature atmospheric pressure plasma enhanced tooth whitening: the next-generation technology. Int. J. Dent. Hyg. 12, 108–114 (2014). https://doi.org/10.1111/idh.12031

    Article  Google Scholar 

  83. Celik, B., Capar, I.D., Ibis, F., Erdilek, N., Ercan, U.K.: Deionized water can substitute common bleaching agents for nonvital tooth bleaching when treated with non-thermal atmospheric plasma. J. Oral Sci. 61, 103–110 (2019). https://doi.org/10.2334/josnusd.17-0419

    Article  Google Scholar 

  84. Nam, S.H., Ok, S.M., Kim, G.C.: Tooth bleaching with low-temperature plasma lowers surface roughness and Streptococcus mutans adhesion. Int. Endod. J. 51, 479–488 (2018). https://doi.org/10.1111/iej.12860

    Article  Google Scholar 

  85. Nam, S.H., Lee, H.J., Hong, J.W., Kim, G.C.: Efficacy of nonthermal atmospheric pressure plasma for tooth bleaching. Sci. World J. 2015, 581731 (2015). https://doi.org/10.1155/2015/581731

    Article  Google Scholar 

Download references

Acknowledgment

This work was supported by research grant ON172007 from the Ministry of Education, Science and Technological Development, Republic of Serbia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vesna Miletic .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Stasic, J.N., Miletic, V. (2020). Surface Modification of Dental Materials and Hard Tissues Using Nonthermal Atmospheric Plasma. In: Mitrovic, N., Milosevic, M., Mladenovic, G. (eds) Computational and Experimental Approaches in Materials Science and Engineering. CNNTech 2018. Lecture Notes in Networks and Systems, vol 90. Springer, Cham. https://doi.org/10.1007/978-3-030-30853-7_8

Download citation

Publish with us

Policies and ethics