Skip to main content

The Role of Exhaustion in Tumor-Induced T-Cell Dysfunction in Cancer

  • Chapter
  • First Online:

Abstract

T-cells are essential components of the immune system and have been the major focus of immunotherapeutic strategies to boost endogenous antitumor immunity. However, despite homing into tumor sites, infiltrating T-cells seldom control tumor growth, and T-cell-directed immunotherapy has not been successful. Initially, anergy was thought to be responsible for the nonresponsiveness of T-cells to tumors. Nevertheless, cancer has been hypothesized to be a chronic disease, in a similar fashion to chronic viral infections, where T-cells are chronically stimulated. In this scenario, tumor-specific T-cells become dysfunctional, progressively losing effector functions, such as cytolysis or cytokine secretion, a phenomenon known as T-cell exhaustion. In this chapter, we will review the concept of T-cell exhaustion, the mechanisms involved, as well as the markers employed for the identification of exhausted T-cells. To conclude, we discuss the evidence for cancer-induced exhaustion, in particular in lung cancer, in addition to the implications of this phenomenon for tumor immunology.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Sharpe AH, Wherry EJ, Ahmed R, Freeman GJ. The function of programmed cell death 1 and its ligands in regulating autoimmunity and infection. Nat Immunol. 2007;8(3):239–45.

    Article  CAS  PubMed  Google Scholar 

  2. Sharpe AH, Abbas AK. T-cell costimulation — biology, therapeutic potential, and challenges. N Engl J Med. 2006;355(10):973–5.

    Article  CAS  PubMed  Google Scholar 

  3. Pentcheva-Hoang T, Corse E, Allison JP. Negative regulators of T-cell activation: potential targets for therapeutic intervention in cancer, autoimmune disease, and persistent infections. Immunol Rev. 2009;229(1):67–87.

    Article  CAS  PubMed  Google Scholar 

  4. Rodriguez-Manzanet R, DeKruyff R, Kuchroo VK, Umetsu DT. The costimulatory role of TIM molecules. Immunol Rev. 2009;229(1):259–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Schietinger A, Greenberg PD. Tolerance and exhaustion: defining mechanisms of T cell dysfunction. Trends Immunol. 2014;35(2):51–60.

    Article  CAS  PubMed  Google Scholar 

  6. Kyewski B, Klein L. A central role for central tolerance. Annu Rev Immunol. 2006;24:571–606.

    Article  CAS  PubMed  Google Scholar 

  7. Choi S, Schwartz RH. Molecular mechanisms for adaptive tolerance and other T cell anergy models. Semin Immunol. 2007;19(3):140–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Schwartz RH. T cell anergy. Annu Rev Immunol. 2003;21:305–34.

    Article  CAS  PubMed  Google Scholar 

  9. Driessens G, Kline J, Gajewski TF. Costimulatory and coinhibitory receptors in anti-tumor immunity. Immunol Rev. 2009;229(1):126–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Crespo J, Sun H, Welling TH, Tian Z, Zou W. T cell anergy, exhaustion, senescence, and stemness in the tumor microenvironment. Curr Opin Immunol. 2013;25(2):214–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Safford M, Collins S, Lutz MA, Allen A, Huang CT, Kowalski J, et al. Egr-2 and Egr-3 are negative regulators of T cell activation. Nat Immunol. 2005;6(5):472–80.

    Article  CAS  PubMed  Google Scholar 

  12. Wherry JE, Ha S-J, Kaech SM, Haining NW, Sarkar S, Kalia V, et al. Molecular signature of CD8+ T cell exhaustion during chronic viral infection. Immunity. 2007;27(4):670–84.

    Article  CAS  PubMed  Google Scholar 

  13. Collins S, Lutz MA, Zarek PE, Anders RA, Kersh GJ, Powell JD. Opposing regulation of T cell function by Egr-1/NAB2 and Egr-2/Egr-3. Eur J Immunol. 2008;38(2):528–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Kim PS, Ahmed R. Features of responding T cells in cancer and chronic infection. Curr Opin Immunol. 2010;22(2):223–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Curiel TJ, Wei S, Dong H, Alvarez X, Cheng P, Mottram P, et al. Blockade of B7-H1 improves myeloid dendritic cell-mediated antitumor immunity. Nat Med. 2003;9(5):562–7.

    Article  CAS  PubMed  Google Scholar 

  16. Zou W, Chen L. Inhibitory B7-family molecules in the tumour microenvironment. Nat Rev Immunol. 2008;8(6):467–77.

    Article  CAS  PubMed  Google Scholar 

  17. Wang S-FF, Fouquet S, Chapon M, Salmon H, Regnier F, Labroquère K, et al. Early T cell signalling is reversibly altered in PD-1+ T lymphocytes infiltrating human tumors. PLoS One. 2011;6(3):e17621.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Janikashvili N, Bonnotte B, Katsanis E, Larmonier N. The dendritic cell-regulatory T lymphocyte crosstalk contributes to tumor-induced tolerance. Clin Dev Immunol. 2011;2011:430394.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Calcinotto A, Filipazzi P, Grioni M, Iero M, De Milito A, Ricupito A, et al. Modulation of microenvironment acidity reverses anergy in human and murine tumor-infiltrating T lymphocytes. Cancer Res. 2012;72(11):2746–56.

    Article  CAS  PubMed  Google Scholar 

  20. Redmond WL, Linch SN. Combinatorial immunotherapeutic approaches to restore the function of anergic tumor-reactive cytotoxic CD8(+) T cells. Hum Vaccin Immunother. 2016;12(10):2519–22.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Blank C, Brown I, Peterson AC, Spiotto M, Iwai Y, Honjo T, et al. PD-L1/B7H-1 inhibits the effector phase of tumor rejection by T cell receptor (TCR) transgenic CD8+ T cells. Cancer Res. 2004;64(3):1140–5.

    Article  CAS  PubMed  Google Scholar 

  22. Klein L, Trautman L, Psarras S, Schnell S, Siermann A, Liblau R, et al. Visualizing the course of antigen-specific CD8 and CD4 T cell responses to a growing tumor. Eur J Immunol. 2003;33(3):806–14.

    Article  CAS  PubMed  Google Scholar 

  23. Wherry JE. T cell exhaustion. Nat Immunol. 2011;12(6):492–9.

    Article  CAS  PubMed  Google Scholar 

  24. Zajac AJ, Blattman JN, Murali-Krishna K, Sourdive DJ, Suresh M, Altman JD, et al. Viral immune evasion due to persistence of activated T cells without effector function. J Exp Med. 1998;188(12):2205–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Jeong HY, Lee YJ, Seo SK, Lee SW, Park SJ, Lee JN, et al. Blocking of monocyte-associated B7-H1 (CD274) enhances HCV-specific T cell immunity in chronic hepatitis C infection. J Leukoc Biol. 2008;83(3):755–64.

    Article  CAS  PubMed  Google Scholar 

  26. Nebbia G, Peppa D, Schurich A, Khanna P, Singh HD, Cheng Y, et al. Upregulation of the Tim-3/galectin-9 pathway of T cell exhaustion in chronic hepatitis B virus infection. PLoS One. 2012;7(10):e47648.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Joshi T, Rodriguez S, Perovic V, Cockburn IA, Stager S. B7-H1 blockade increases survival of dysfunctional CD8(+) T cells and confers protection against Leishmania donovani infections. PLoS Pathog. 2009;5(5):e1000431.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Ames RY, Ting LM, Gendlina I, Kim K, Macian F. The transcription factor NFAT1 participates in the induction of CD4+ T cell functional exhaustion during Plasmodium yoelii infection. Infect Immun. 2017;85(9):e00364–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Freeman GJ, Wherry JE, Ahmed R, Sharpe AH. Reinvigorating exhausted HIV-specific T cells via PD-1–PD-1 ligand blockade. J Exp Med. 2006;203(10):2223–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Wherry EJ, Kurachi M. Molecular and cellular insights into T cell exhaustion. Nat Rev Immunol. 2015;15(8):486–99.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Barber DL, Wherry EJ, Masopust D, Zhu B, Allison JP, Sharpe AH, et al. Restoring function in exhausted CD8 T cells during chronic viral infection. Nature. 2006;439(7077):682–7.

    Article  CAS  PubMed  Google Scholar 

  32. Blank C, Mackensen A. Contribution of the PD-L1/PD-1 pathway to T-cell exhaustion: an update on implications for chronic infections and tumor evasion. Cancer Immunol Immunother. 2007;56(5):739–45.

    Article  PubMed  Google Scholar 

  33. Boussiotis VA. Molecular and biochemical aspects of the PD-1 checkpoint pathway. N Engl J Med. 2016;375(18):1767–78.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Dong H, Chen L. B7-H1 pathway and its role in the evasion of tumor immunity. J Mol Med (Berl). 2003;81(5):281–7.

    Article  CAS  Google Scholar 

  35. Trabattoni D, Saresella M, Biasin M, Boasso A, Piacentini L, Ferrante P, et al. B7-H1 is up-regulated in HIV infection and is a novel surrogate marker of disease progression. Blood. 2003;101(7):2514–20.

    Article  CAS  PubMed  Google Scholar 

  36. Geng L, Jiang G, Fang Y, Dong S, Xie H, Chen Y, et al. B7-H1 expression is upregulated in peripheral blood CD14+ monocytes of patients with chronic hepatitis B virus infection, which correlates with higher serum IL-10 levels. J Viral Hepat. 2006;13(11):725–33.

    Article  CAS  PubMed  Google Scholar 

  37. Patsoukis N, Bardhan K, Chatterjee P, Sari D, Liu B, Bell LN, et al. PD-1 alters T-cell metabolic reprogramming by inhibiting glycolysis and promoting lipolysis and fatty acid oxidation. Nat Commun. 2015;6:6692.

    Article  CAS  PubMed  Google Scholar 

  38. Strome SE, Dong H, Tamura H, Voss SG, Flies DB, Tamada K, et al. B7-H1 blockade augments adoptive T-cell immunotherapy for squamous cell carcinoma. Cancer Res. 2003;63(19):6501–5.

    CAS  PubMed  Google Scholar 

  39. Hirano F, Kaneko K, Tamura H, Dong H, Wang S, Ichikawa M, et al. Blockade of B7-H1 and PD-1 by monoclonal antibodies potentiates cancer therapeutic immunity. Cancer Res. 2005;65(3):1089–96.

    CAS  PubMed  Google Scholar 

  40. Petrovas C, Casazza JP, Brenchley JM, Price DA, Gostick E, Adams WC, et al. PD-1 is a regulator of virus-specific CD8+ T cell survival in HIV infection. J Exp Med. 2006;203(10):2281–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Trautmann L, Janbazian L, Chomont N, Said EA, Gimmig S, Bessette B, et al. Upregulation of PD-1 expression on HIV-specific CD8+ T cells leads to reversible immune dysfunction. Nat Med. 2006;12(10):1198–202.

    Article  CAS  PubMed  Google Scholar 

  42. Brahmer JR, Drake CG, Wollner I, Powderly JD, Picus J, Sharfman WH, et al. Phase I study of single-agent anti-programmed death-1 (MDX-1106) in refractory solid tumors: safety, clinical activity, pharmacodynamics, and immunologic correlates. J Clin Oncol. 2010;28(19):3167–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Anderson AC, Joller N, Kuchroo VK. Lag-3, Tim-3, and TIGIT: co-inhibitory receptors with specialized functions in immune regulation. Immunity. 2016;44(5):989–1004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Patsoukis N, Weaver JD, Strauss L, Herbel C, Seth P, Boussiotis VA. Immunometabolic regulations mediated by coinhibitory receptors and their impact on T cell immune responses. Front Immunol. 2017;8:330.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. Jin H-TT, Anderson AC, Tan WG, West EE, Ha S-JJ, Araki K, et al. Cooperation of Tim-3 and PD-1 in CD8 T-cell exhaustion during chronic viral infection. Proc Natl Acad Sci U S A. 2010;107(33):14733–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Zhou S, Ou R, Huang L, Moskophidis D. Critical role for perforin-, Fas/FasL-, and TNFR1-mediated cytotoxic pathways in down-regulation of antigen-specific T cells during persistent viral infection. J Virol. 2002;76(2):829–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Bucks CM, Norton JA, Boesteanu AC, Mueller YM, Katsikis PD. Chronic antigen stimulation alone is sufficient to drive CD8+ T cell exhaustion. J Immunol. 2009;182(11):6697–708.

    Article  CAS  PubMed  Google Scholar 

  48. Blackburn SD, Shin H, Haining NW, Zou T, Workman CJ, Polley A, et al. Coregulation of CD8+ T cell exhaustion by multiple inhibitory receptors during chronic viral infection. Nat Immunol. 2009;10(1):29–37.

    Article  CAS  PubMed  Google Scholar 

  49. Legat A, Speiser DE, Pircher H, Zehn D, Marraco SA. Inhibitory receptor expression depends more dominantly on differentiation and activation than “exhaustion” of human CD8 T cells. Front Immunol. 2013;4:455.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  50. Delgoffe GM, Powell JD. Feeding an army: the metabolism of T cells in activation, anergy, and exhaustion. Mol Immunol. 2015;68(2 Pt C):492–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Brooks DG, Trifilo MJ, Edelmann KH, Teyton L, McGavern DB, Oldstone MBA. Interleukin-10 determines viral clearance or persistence in vivo. Nat Med. 2006;12(11):1301–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Garba ML, Pilcher CD, Bingham AL, Eron J, Frelinger JA. HIV antigens can induce TGF-beta(1)-producing immunoregulatory CD8+ T cells. J Immunol. 2002;168(5):2247–54.

    Article  CAS  PubMed  Google Scholar 

  53. Alatrakchi N, Graham CS, van der Vliet HJ, Sherman KE, Exley MA, Koziel MJ. Hepatitis C virus (HCV)-specific CD8+ cells produce transforming growth factor beta that can suppress HCV-specific T-cell responses. J Virol. 2007;81(11):5882–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Bierie B, Moses HL. Transforming growth factor beta (TGF-beta) and inflammation in cancer. Cytokine Growth Factor Rev. 2010;21(1):49–59.

    Article  CAS  PubMed  Google Scholar 

  55. Sato T, Terai M, Tamura Y, Alexeev V, Mastrangelo MJ, Selvan SR. Interleukin 10 in the tumor microenvironment: a target for anticancer immunotherapy. Immunol Res. 2011;51(2–3):170–82.

    Article  CAS  PubMed  Google Scholar 

  56. Man K, Gabriel SS, Liao Y, Gloury R, Preston S, Henstridge DC, et al. Transcription factor IRF4 promotes CD8+ T cell exhaustion and limits the development of memory-like T cells during chronic infection. Immunity. 2017;47(6):1129–41.

    Article  CAS  PubMed  Google Scholar 

  57. McKinney EF, Lee JC, Jayne DR, Lyons PA, Smith KG. T-cell exhaustion, co-stimulation and clinical outcome in autoimmunity and infection. Nature. 2015;523(7562):612–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Sauce D, Almeida JR, Larsen M, Haro L, Autran B, Freeman GJ, et al. PD-1 expression on human CD8 T cells depends on both state of differentiation and activation status. AIDS (London, England). 2007;21(15):2005–13.

    Article  CAS  Google Scholar 

  59. Duraiswamy J, Ibegbu CC, Masopust D, Miller JD, Araki K, Doho GH, et al. Phenotype, function, and gene expression profiles of programmed death-1(hi) CD8 T cells in healthy human adults. J Immunol. 2011;186(7):4200–12.

    Article  CAS  PubMed  Google Scholar 

  60. Quigley M, Pereyra F, Nilsson B, Porichis F, Fonseca C, Eichbaum Q, et al. Transcriptional analysis of HIV-specific CD8+ T cells shows that PD-1 inhibits T cell function by upregulating BATF. Nat Med. 2010;16(10):1147–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Shin H, Blackburn SD, Intlekofer AM, Kao C, Angelosanto JM, Reiner SL, et al. A role for the transcriptional repressor Blimp-1 in CD8(+) T cell exhaustion during chronic viral infection. Immunity. 2009;31(2):309–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Kao C, Oestreich KJ, Paley MA, Crawford A, Angelosanto JM, Ali MA, et al. Transcription factor T-bet represses expression of the inhibitory receptor PD-1 and sustains virus-specific CD8+ T cell responses during chronic infection. Nat Immunol. 2011;12(7):663–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Paley MA, Kroy DC, Odorizzi PM, Johnnidis JB, Dolfi DV, Barnett BE, et al. Progenitor and terminal subsets of CD8+ T cells cooperate to contain chronic viral infection. Science. 2012;338(6111):1220–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Hailemichael Y, Dai Z, Jaffarzad N, Ye Y, Medina MA, Huang X-FF, et al. Persistent antigen at vaccination sites induces tumor-specific CD8+ T cell sequestration, dysfunction and deletion. Nat Med. 2013;19(4):465–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Thompson RH, Kuntz SM, Leibovich BC, Dong H, Lohse CM, Webster WS, et al. Tumor B7-H1 is associated with poor prognosis in renal cell carcinoma patients with long-term follow-up. Cancer Res. 2006;66(7):3381–5.

    Article  CAS  PubMed  Google Scholar 

  66. Apetoh L, Smyth MJ, Drake CG, Abastado J-PP, Apte RN, Ayyoub M, et al. Consensus nomenclature for CD8(+) T cell phenotypes in cancer. Oncoimmunology. 2015;4(4):e998538.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  67. Ahmadzadeh M, Johnson LA, Heemskerk B, Wunderlich JR, Dudley ME, White DE, et al. Tumor antigen-specific CD8 T cells infiltrating the tumor express high levels of PD-1 and are functionally impaired. Blood. 2009;114(8):1537–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Fourcade J, Sun Z, Benallaoua M, Guillaume P, Luescher IF, Sander C, et al. Upregulation of Tim-3 and PD-1 expression is associated with tumor antigen–specific CD8+ T cell dysfunction in melanoma patients. J Exp Med. 2010;207(10):2175–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Derre L, Rivals JP, Jandus C, Pastor S, Rimoldi D, Romero P, et al. BTLA mediates inhibition of human tumor-specific CD8+ T cells that can be partially reversed by vaccination. J Clin Invest. 2010;120(1):157–67.

    Article  CAS  PubMed  Google Scholar 

  70. Baitsch L, Legat A, Barba L, Marraco SA, Rivals J-P, Baumgaertner P, et al. Extended co-expression of inhibitory receptors by human CD8 T-Cells depending on differentiation, antigen-specificity and anatomical localization. PLoS One. 2012;7(2):e30852.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Baitsch L, Baumgaertner P, Devevre E, Raghav SK, Legat A, Barba L, et al. Exhaustion of tumor-specific CD8(+) T cells in metastases from melanoma patients. J Clin Invest. 2011;121(6):2350–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Matsuzaki J, Gnjatic S, Mhawech-Fauceglia P, Beck A, Miller A, Tsuji T, et al. Tumor-infiltrating NY-ESO-1-specific CD8+ T cells are negatively regulated by LAG-3 and PD-1 in human ovarian cancer. Proc Natl Acad Sci U S A. 2010;107(17):7875–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Yamamoto R, Nishikori M, Kitawaki T, Sakai T, Hishizawa M, Tashima M, et al. PD-1-PD-1 ligand interaction contributes to immunosuppressive microenvironment of Hodgkin lymphoma. Blood. 2008;111(6):3220–4.

    Article  CAS  PubMed  Google Scholar 

  74. Gandhi MK, Lambley E, Duraiswamy J, Dua U, Smith C, Elliott S, et al. Expression of LAG-3 by tumor-infiltrating lymphocytes is coincident with the suppression of latent membrane antigen-specific CD8+ T-cell function in Hodgkin lymphoma patients. Blood. 2006;108(7):2280–9.

    Article  CAS  PubMed  Google Scholar 

  75. Riches JC, Davies JK, McClanahan F, Fatah R, Iqbal S, Agrawal S, et al. T cells from CLL patients exhibit features of T-cell exhaustion but retain capacity for cytokine production. Blood. 2013;121(9):1612–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Yang ZZ, Grote DM, Xiu B, Ziesmer SC, Price-Troska TL, Hodge LS, et al. TGF-β upregulates CD70 expression and induces exhaustion of effector memory T cells in B-cell non-Hodgkin’s lymphoma. Leukemia. 2014;28(9):1872–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Badoual C, Hans S, Merillon N, Van Ryswick C, Ravel P, Benhamouda N, et al. PD-1-expressing tumor-infiltrating T cells are a favorable prognostic biomarker in HPV-associated head and neck cancer. Cancer Res. 2013;73(1):128–38.

    Article  CAS  PubMed  Google Scholar 

  78. Lechner A, Schlößer H, Rothschild SI, Thelen M, Reuter S, Zentis P, et al. Characterization of tumor-associated T-lymphocyte subsets and immune checkpoint molecules in head and neck squamous cell carcinoma. Oncotarget. 2017;8(27):44418–33.

    Article  PubMed  PubMed Central  Google Scholar 

  79. Wu K, Kryczek I, Chen L, Zou W, Welling TH. Kupffer cell suppression of CD8+ T cells in human hepatocellular carcinoma is mediated by B7-H1/programmed death-1 interactions. Cancer Res. 2009;69(20):8067–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Sideras K, Biermann K, Verheij J, Takkenberg BR, Mancham S, Hansen BE, et al. PD-L1, Galectin-9 and CD8+ tumor-infiltrating lymphocytes are associated with survival in hepatocellular carcinoma. Oncoimmunology. 2017;6(2):e1273309.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  81. Wu X, Zhang H, Xing Q, Cui J, Li J, Li Y, et al. PD-1(+) CD8(+) T cells are exhausted in tumours and functional in draining lymph nodes of colorectal cancer patients. Br J Cancer. 2014;111(7):1391–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Zhang Y, Cai P, Li L, Shi L, Chang P, Liang T, et al. Co-expression of TIM-3 and CEACAM1 promotes T cell exhaustion in colorectal cancer patients. Int Immunopharmacol. 2017;43:210–8.

    Article  PubMed  CAS  Google Scholar 

  83. Prall F, Hühns M. The PD-1 expressing immune phenotype of T cell exhaustion is prominent in the ‘immunoreactive’ microenvironment of colorectal carcinoma. Histopathology. 2017;71(3):366–74.

    Article  PubMed  Google Scholar 

  84. Haymaker C, Wu R, Bernatchez C, Radvanyi L. PD-1 and BTLA and CD8(+) T-cell “exhaustion” in cancer: “exercising” an alternative viewpoint. Oncoimmunology. 2012;1(5):735–8.

    Article  PubMed  PubMed Central  Google Scholar 

  85. Inozume T, Hanada K, Wang QJ, Ahmadzadeh M, Wunderlich JR, Rosenberg SA, et al. Selection of CD8+PD-1+ lymphocytes in fresh human melanomas enriches for tumor-reactive T cells. J Immunother. 2010;33(9):956–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Wu R, Forget MA, Chacon J, Bernatchez C, Haymaker C, Chen JQ, et al. Adoptive T-cell therapy using autologous tumor-infiltrating lymphocytes for metastatic melanoma: current status and future outlook. Cancer J. 2012;18(2):160–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Prado-Garcia H, Romero-Garcia S, Aguilar-Cazares D, Meneses-Flores M, Lopez-Gonzalez JS. Tumor-induced CD8+ T-cell dysfunction in lung cancer patients. Clin Dev Immunol. 2012;2012:741741.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  88. Torre LA, Bray F, Siegel RL, Ferlay J, Lortet-Tieulent J, Jemal A. Global cancer statistics, 2012. CA Cancer J Clin. 2015;65(2):87–108.

    Article  PubMed  Google Scholar 

  89. Dieu-Nosjean MC, Antoine M, Danel C, Heudes D, Wislez M, Poulot V, et al. Long-term survival for patients with non-small-cell lung cancer with intratumoral lymphoid structures. J Clin Oncol. 2008;26(27):4410–7.

    Article  CAS  PubMed  Google Scholar 

  90. Kawai O, Ishii G, Kubota K, Murata Y, Naito Y, Mizuno T, et al. Predominant infiltration of macrophages and CD8(+) T cells in cancer nests is a significant predictor of survival in stage IV nonsmall cell lung cancer. Cancer. 2008;113(6):1387–95.

    Article  CAS  PubMed  Google Scholar 

  91. Ruffini E, Asioli S, Filosso PL, Lyberis P, Bruna MC, Macri L, et al. Clinical significance of tumor-infiltrating lymphocytes in lung neoplasms. Ann Thorac Surg. 2009;87(2):365–71. discussion 71-2

    Article  PubMed  Google Scholar 

  92. Zhang Y, Huang S, Gong D, Qin Y, Shen Q. Programmed death-1 upregulation is correlated with dysfunction of tumor-infiltrating CD8+ T lymphocytes in human non-small cell lung cancer. Cell Mol Immunol. 2010;7(5):389–95.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  93. Gao X, Zhu Y, Li G, Huang H, Zhang G, Wang F, et al. TIM-3 expression characterizes regulatory T cells in tumor tissues and is associated with lung cancer progression. PLoS One. 2012;7(2):e30676.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Thommen DS, Schreiner J, Muller P, Herzig P, Roller A, Belousov A, et al. Progression of lung cancer is associated with increased dysfunction of T cells defined by coexpression of multiple inhibitory receptors. Cancer Immunol Res. 2015;3(12):1344–55.

    Article  CAS  PubMed  Google Scholar 

  95. Prado-Garcia H, Romero-Garcia S, Lopez-Gonzalez JS. The role of exhaustion in tumor-induced T cell dysfunction in cancer. In: Rezaei N, editor. Cancer immunology: a translational medicine context. Berlin: Springer; 2015. p. 61–75.

    Google Scholar 

  96. Prado-Garcia H, Romero-Garcia S, Puerto-Aquino A, Rumbo-Nava U. The PD-L1/PD-1 pathway promotes dysfunction, but not “exhaustion”, in tumor-responding T cells from pleural effusions in lung cancer patients. Cancer Immunol Immunother. 2017;66(6):765–76.

    Article  CAS  PubMed  Google Scholar 

  97. Brahmer JR, Tykodi SS, Chow LQ, Hwu WJ, Topalian SL, Hwu P, et al. Safety and activity of anti-PD-L1 antibody in patients with advanced cancer. N Engl J Med. 2012;366(26):2455–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The authors thank the partial financial support of the Consejo Nacional de Ciencia y Tecnología (CONACYT), grant CB-2013-219932.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Prado-Garcia, H., Romero-Garcia, S. (2020). The Role of Exhaustion in Tumor-Induced T-Cell Dysfunction in Cancer. In: Rezaei, N. (eds) Cancer Immunology. Springer, Cham. https://doi.org/10.1007/978-3-030-30845-2_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-30845-2_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-30844-5

  • Online ISBN: 978-3-030-30845-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics