Skip to main content

T-Cell Metabolism and Its Dysfunction Induced by Cancer

  • Chapter
  • First Online:

Abstract

This chapter is focused on the changes in the metabolic pathways of immune cells to fulfill the demands of development, proliferation, and effector function of T-cells.

We review how T-cells change their metabolism to (a) obtain energy throughout the different states of maturation (naive, memory, and effector cell), (b) form construction blocks to proliferate (carbon skeleton and nitrogen for nitrogen bases), and (c) live during a long-term period. Finally, we also review how the metabolism of T-cell is affected by the tumor microenvironment.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Cui W, Kaech SM. Generation of effector CD8+ T cells and their conversion to memory T cells. Immunol Rev. 2010;236:151–66. https://doi.org/10.1111/j.1600-065X.2010.00926.x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Bengsch B, Johnson AL, Kurachi M, et al. Bioenergetic insufficiencies due to metabolic alterations regulated by the inhibitory receptor PD-1 are an early driver of CD8(+) T cell exhaustion. Immunity. 2016;45:358–73. https://doi.org/10.1016/j.immuni.2016.07.008.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Lefrancois L. Development, trafficking, and function of memory T-cell subsets. Immunol Rev. 2006;211:93–103. https://doi.org/10.1111/j.0105-2896.2006.00393.x.

    Article  CAS  PubMed  Google Scholar 

  4. Appay V, van Lier RA, Sallusto F, Roederer M. Phenotype and function of human T lymphocyte subsets: consensus and issues. Cytometry A. 2008;73:975–83. https://doi.org/10.1002/cyto.a.20643.

    Article  PubMed  Google Scholar 

  5. Belz GT, Kallies A. Effector and memory CD8+ T cell differentiation: toward a molecular understanding of fate determination. Curr Opin Immunol. 2010;22:279–85. https://doi.org/10.1016/j.coi.2010.03.008.

    Article  CAS  PubMed  Google Scholar 

  6. Mahnke YD, Brodie TM, Sallusto F, Roederer M, Lugli E. The who’s who of T-cell differentiation: human memory T-cell subsets. Eur J Immunol. 2013;43:2797–809. https://doi.org/10.1002/eji.201343751.

    Article  CAS  PubMed  Google Scholar 

  7. Jones RG, Thompson CB. Revving the engine: signal transduction fuels T cell activation. Immunity. 2007;27:173–8. https://doi.org/10.1016/j.immuni.2007.07.008.

    Article  CAS  PubMed  Google Scholar 

  8. Pearce EL, Walsh MC, Cejas PJ, Harms GM, Shen H, Wang LS, Jones RG, Choi Y. Enhancing CD8 T-cell memory by modulating fatty acid metabolism. Nature. 2009;460:103–7. https://doi.org/10.1038/nature08097.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Sukumar M, Liu J, Ji Y, et al. Inhibiting glycolytic metabolism enhances CD8+ T cell memory and antitumor function. J Clin Invest. 2013;123:4479–88. https://doi.org/10.1172/jci69589.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Ho PC, Bihuniak JD, Macintyre AN, et al. Phosphoenolpyruvate is a metabolic checkpoint of anti-tumor T-cell responses. Cell. 2015;162:1217–28. https://doi.org/10.1016/j.cell.2015.08.012.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. van der Windt GJ, O’Sullivan D, Everts B, et al. CD8 memory T cells have a bioenergetic advantage that underlies their rapid recall ability. Proc Natl Acad Sci U S A. 2013;110:14336–41. https://doi.org/10.1073/pnas.1221740110.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Jones N, Cronin JG, Dolton G, et al. Metabolic adaptation of human CD4(+) and CD8(+) T-cells to T-cell receptor-mediated stimulation. Front Immunol. 2017;8:1516. https://doi.org/10.3389/fimmu.2017.01516.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Yin Y, Choi SC, Xu Z, Zeumer L, Kanda N, Croker BP, Morel L. Glucose oxidation is critical for CD4+ T cell activation in a mouse model of systemic lupus erythematosus. J Immunol. 2016;196:80–90. https://doi.org/10.4049/jimmunol.1501537.

    Article  CAS  PubMed  Google Scholar 

  14. Feng Z, Zhang H, Levine AJ, Jin S. The coordinate regulation of the p53 and mTOR pathways in cells. Proc Natl Acad Sci U S A. 2005;102:8204–9. https://doi.org/10.1073/pnas.0502857102.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Tomida T, Hirose K, Takizawa A, Shibasaki F, Iino M. NFAT functions as a working memory of Ca2+ signals in decoding Ca2+ oscillation. EMBO J. 2003;22:3825–32. https://doi.org/10.1093/emboj/cdg381.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. He S, Kato K, Jiang J, Wahl DR, Mineishi S, Fisher EM, Murasko DM, Glick GD, Zhang Y. Characterization of the metabolic phenotype of rapamycin-treated CD8+ T cells with augmented ability to generate long-lasting memory cells. PLoS One. 2011;6:e20107. https://doi.org/10.1371/journal.pone.0020107.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Williams MA, Bevan MJ. Effector and memory CTL differentiation. Annu Rev Immunol. 2007;25:171–92. https://doi.org/10.1146/annurev.immunol.25.022106.141548.

    Article  CAS  PubMed  Google Scholar 

  18. D’Souza AD, Parikh N, Kaech SM, Shadel GS. Convergence of multiple signaling pathways is required to coordinately up-regulate mtDNA and mitochondrial biogenesis during T cell activation. Mitochondrion. 2007;7:374–85. https://doi.org/10.1016/j.mito.2007.08.001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Chang CH, Curtis JD, Maggi LB Jr, et al. Posttranscriptional control of T cell effector function by aerobic glycolysis. Cell. 2013;153:1239–51. https://doi.org/10.1016/j.cell.2013.05.016.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Tripmacher R, Gaber T, Dziurla R, et al. Human CD4(+) T cells maintain specific functions even under conditions of extremely restricted ATP production. Eur J Immunol. 2008;38:1631–42. https://doi.org/10.1002/eji.200738047.

    Article  CAS  PubMed  Google Scholar 

  21. O’Sullivan D, van der Windt GJ, Huang SC, et al. Memory CD8(+) T cells use cell-intrinsic lipolysis to support the metabolic programming necessary for development. Immunity. 2014;41:75–88. https://doi.org/10.1016/j.immuni.2014.06.005.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Shen Y, Wen Z, Li Y, Matteson EL, Hong J, Goronzy JJ, Weyand CM. Metabolic control of the scaffold protein TKS5 in tissue-invasive, proinflammatory T cells. Nat Immunol. 2017;18:1025–34. https://doi.org/10.1038/ni.3808.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Muroski ME, Miska J, Chang AL, Zhang P, Rashidi A, Moore H, Lopez-Rosas A, Han Y, Lesniak MS. Fatty acid uptake in T cell subsets using a quantum dot fatty acid conjugate. Sci Rep. 2017;7:5790. https://doi.org/10.1038/s41598-017-05556-x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Henson SM, Lanna A, Riddell NE, et al. p38 signaling inhibits mTORC1-independent autophagy in senescent human CD8(+) T cells. J Clin Invest. 2014;124:4004–16. https://doi.org/10.1172/jci75051.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. van der Windt GJ, Everts B, Chang CH, Curtis JD, Freitas TC, Amiel E, Pearce EJ, Pearce EL. Mitochondrial respiratory capacity is a critical regulator of CD8+ T cell memory development. Immunity. 2012;36:68–78. https://doi.org/10.1016/j.immuni.2011.12.007.

    Article  CAS  PubMed  Google Scholar 

  26. Buck MD, O’Sullivan D, Klein Geltink RI, et al. Mitochondrial dynamics controls T cell fate through metabolic programming. Cell. 2016;166:63–76. https://doi.org/10.1016/j.cell.2016.05.035.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Chang CH, Qiu J, O’Sullivan D, et al. Metabolic competition in the tumor microenvironment is a driver of cancer progression. Cell. 2015;162:1229–41. https://doi.org/10.1016/j.cell.2015.08.016.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Schurich A, Pallett LJ, Jajbhay D, et al. Distinct metabolic requirements of exhausted and functional virus-specific CD8 T cells in the same host. Cell Rep. 2016;16:1243–52. https://doi.org/10.1016/j.celrep.2016.06.078.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Patsoukis N, Bardhan K, Chatterjee P, et al. PD-1 alters T-cell metabolic reprogramming by inhibiting glycolysis and promoting lipolysis and fatty acid oxidation. Nat Commun. 2015;6:6692. https://doi.org/10.1038/ncomms7692.

    Article  CAS  PubMed  Google Scholar 

  30. Parry RV, Chemnitz JM, Frauwirth KA, Lanfranco AR, Braunstein I, Kobayashi SV, Linsley PS, Thompson CB, Riley JL. CTLA-4 and PD-1 receptors inhibit T-cell activation by distinct mechanisms. Mol Cell Biol. 2005;25:9543–53. https://doi.org/10.1128/mcb.25.21.9543-9553.2005.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Duvel K, Yecies JL, Menon S, et al. Activation of a metabolic gene regulatory network downstream of mTOR complex 1. Mol Cell. 2010;39:171–83. https://doi.org/10.1016/j.molcel.2010.06.022.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Angelin A, Gil-de-Gomez L, Dahiya S, et al. Foxp3 reprograms T cell metabolism to function in low-glucose, high-lactate environments. Cell Metab. 2017;25:1282–93.e7. https://doi.org/10.1016/j.cmet.2016.12.018.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Aguilar-Cazares D, Meneses-Flores M, Prado-Garcia H, Islas-Vazquez L, Rojo-Leon V, Romero-Garcia S, Rivera-Rosales RM, Lopez-Gonzalez JS. Relationship of dendritic cell density, HMGB1 expression, and tumor-infiltrating lymphocytes in non-small cell lung carcinomas. Appl Immunohistochem Mol Morphol. 2014;22:105–13. https://doi.org/10.1097/PAI.0b013e3182849808.

    Article  CAS  PubMed  Google Scholar 

  34. Denkert C, von Minckwitz G, Darb-Esfahani S, et al. Tumour-infiltrating lymphocytes and prognosis in different subtypes of breast cancer: a pooled analysis of 3771 patients treated with neoadjuvant therapy. Lancet Oncol. 2017;19(1):P40–50. https://doi.org/10.1016/s1470-2045(17)30904-x.

    Article  Google Scholar 

  35. Jakubowska K, Kisielewski W, Kanczuga-Koda L, Koda M, Famulski W. Stromal and intraepithelial tumor-infiltrating lymphocytes in colorectal carcinoma. Oncol Lett. 2017;14:6421–32. https://doi.org/10.3892/ol.2017.7013.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Yagi T, Baba Y, Ishimoto T, Iwatsuki M, Miyamoto Y, Yoshida N, Watanabe M, Baba H. PD-L1 expression, tumor-infiltrating lymphocytes, and clinical outcome in patients with surgically resected esophageal cancer. Ann Surg. 2019;269(3):471–8. https://doi.org/10.1097/sla.0000000000002616.

    Article  PubMed  Google Scholar 

  37. Nakagawa Y, Negishi Y, Shimizu M, Takahashi M, Ichikawa M, Takahashi H. Effects of extracellular pH and hypoxia on the function and development of antigen-specific cytotoxic T lymphocytes. Immunol Lett. 2015;167:72–86. https://doi.org/10.1016/j.imlet.2015.07.003.

    Article  CAS  PubMed  Google Scholar 

  38. Caldwell CC, Kojima H, Lukashev D, Armstrong J, Farber M, Apasov SG, Sitkovsky MV. Differential effects of physiologically relevant hypoxic conditions on T lymphocyte development and effector functions. J Immunol. 2001;167:6140–9.

    Article  CAS  PubMed  Google Scholar 

  39. Cretenet G, Clerc I, Matias M, et al. Cell surface Glut1 levels distinguish human CD4 and CD8 T lymphocyte subsets with distinct effector functions. Sci Rep. 2016;6:24129. https://doi.org/10.1038/srep24129.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Brand A, Singer K, Koehl GE, et al. LDHA-associated lactic acid production blunts tumor immunosurveillance by T and NK cells. Cell Metab. 2016;24:657–71. https://doi.org/10.1016/j.cmet.2016.08.011.

    Article  CAS  PubMed  Google Scholar 

  41. Fischer K, Hoffmann P, Voelkl S, et al. Inhibitory effect of tumor cell-derived lactic acid on human T cells. Blood. 2007;109:3812–9. https://doi.org/10.1182/blood-2006-07-035972.

    Article  CAS  PubMed  Google Scholar 

  42. Siska PJ, Beckermann KE, Mason FM, et al. Mitochondrial dysregulation and glycolytic insufficiency functionally impair CD8 T cells infiltrating human renal cell carcinoma. JCI Insight. 2017;2:93411. https://doi.org/10.1172/jci.insight.93411.

    Article  PubMed  Google Scholar 

  43. Haas R, Smith J, Rocher-Ros V, et al. Lactate regulates metabolic and pro-inflammatory circuits in control of T cell migration and effector functions. PLoS Biol. 2015;13:e1002202. https://doi.org/10.1371/journal.pbio.1002202.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the Consejo Nacional de Ciencia y Tecnología (CONACYT), grant CB-2013-219932.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Prado-Garcia, H., Sandoval-Martinez, R., Romero-Garcia, S. (2020). T-Cell Metabolism and Its Dysfunction Induced by Cancer. In: Rezaei, N. (eds) Cancer Immunology. Springer, Cham. https://doi.org/10.1007/978-3-030-30845-2_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-30845-2_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-30844-5

  • Online ISBN: 978-3-030-30845-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics