Skip to main content

Cancer Molecular and Functional Imaging

  • Chapter
  • First Online:
Cancer Immunology

Abstract

Tumor detection at early stage is the key to successful and effective treatment. When tumors are diagnosed in MRI and CT imaging, it is well far advanced beyond the initial phases. Molecular imaging will detect major characteristics of tumor at an earlier stage. After detecting the cancerous cells, the proceeding step would be finding the most effective therapy based on biologic and genetic characteristic of tumor cells and interfering immune pathways to improve outcome. Molecular imaging as a rapidly evolving field routinely uses labeled probes that are injected into the patient’s body. The imaging agents are detectable by imaging devices and generate body or tissue pictures based on agent distribution. The pattern of agent distribution allows physicians to understand the function of organs and tissues within the body. Various molecular imaging techniques such as PET/CT, magnetic resonance imaging (MRI), bioluminescent imaging (BLI), and fluorescence imaging (FLI) are applied for tracking immune and stem cell. We will discuss development and utilization of each modality separately.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Prescott DM. Biology of cancer and the cancer cell: normal and abnormal regulation of cell reproduction. Cancer J Clin. 1972;22(4):262–72.

    Article  CAS  Google Scholar 

  2. Sporn MB. The war on cancer. Lancet. 1996;347(9012):1377–81.

    Article  CAS  PubMed  Google Scholar 

  3. Hanahan D, Weinberg RA. The hallmarks of cancer. Cell. 2000;100(1):57–70.

    Article  CAS  PubMed  Google Scholar 

  4. Feni L, Omrane MA, Fischer M, Zlatopolskiy BD, Neumaier B, Neundorf I. Convenient preparation of (18)F-labeled peptide probes for potential Claudin-4 PET imaging. Pharmaceuticals. 2017;10(4):99.

    Article  CAS  PubMed Central  Google Scholar 

  5. Zakeri ZF, Ahuja HS. Cell death/apoptosis: normal, chemically induced, and teratogenic effect. Mutat Res. 1997;396(1–2):149–61.

    Article  CAS  PubMed  Google Scholar 

  6. Weissleder R. Molecular imaging in cancer. Science. 2006;312(5777):1168–71.

    Article  CAS  PubMed  Google Scholar 

  7. Lucignani G. The immune system and cancer: the evolving role of molecular imaging and molecular targeted therapy. Eur J Nucl Med Mol Imaging. 2006;33(4):503–5.

    Article  PubMed  Google Scholar 

  8. Quail DF, Joyce JA. Microenvironmental regulation of tumor progression and metastasis. Nat Med. 2013;19(11):1423–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Gupta GP, Massague J. Cancer metastasis: building a framework. Cell. 2006;127(4):679–95.

    Article  CAS  PubMed  Google Scholar 

  10. Eccles SA, Welch DR. Metastasis: recent discoveries and novel treatment strategies. Lancet. 2007;369(9574):1742–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Vogelstein B, Kinzler KW. Cancer genes and the pathways they control. Nat Med. 2004;10(8):789–99.

    Article  CAS  PubMed  Google Scholar 

  12. Golestani R, Jung JJ, Sadeghi MM. Molecular imaging of angiogenesis and vascular remodeling in cardiovascular pathology. J Clin Med. 2016;5(6).

    Google Scholar 

  13. Winnard PT Jr, Pathak AP, Dhara S, Cho SY, Raman V, Pomper MG. Molecular imaging of metastatic potential. J Nucl Med. 2008;49(Suppl 2):96S–112S.

    Article  PubMed  Google Scholar 

  14. McCann TE, Kosaka N, Turkbey B, Mitsunaga M, Choyke PL, Kobayashi H. Molecular imaging of tumor invasion and metastases: the role of MRI. NMR Biomed. 2011;24(6):561–8.

    PubMed  Google Scholar 

  15. Condeelis JS, Wyckoff J, Segall JE. Imaging of cancer invasion and metastasis using green fluorescent protein. Eur J Cancer. 2000;36(13):1671–80.

    Article  CAS  PubMed  Google Scholar 

  16. Haris M, Yadav SK, Rizwan A, Singh A, Wang E, Hariharan H, et al. Molecular magnetic resonance imaging in cancer. J Transl Med. 2015;13:313.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Blodgett TM, Meltzer CC, Townsend DW. PET/CT: form and function. Radiology. 2007;242(2):360–85.

    Article  PubMed  Google Scholar 

  18. Czernin J. Clinical applications of FDG-PET in oncology. Acta Med Austriaca. 2002;29(5):162–70.

    Article  CAS  PubMed  Google Scholar 

  19. Juweid ME, Cheson BD. Positron-emission tomography and assessment of cancer therapy. N Engl J Med. 2006;354(5):496–507.

    Article  CAS  PubMed  Google Scholar 

  20. Yankeelov TE, Arlinghaus LR, Li X, Gore JC. The role of magnetic resonance imaging biomarkers in clinical trials of treatment response in cancer. Semin Oncol. 2011;38(1):16–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Thoeny HC, Ross BD. Predicting and monitoring cancer treatment response with diffusion-weighted MRI. J Magn Reson Imaging. 2010;32(1):2–16.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Zaidi H, Alavi A. Current trends in PET and combined (PET/CT and PET/MR) systems design. PET Clinics. 2007;2(2):109–23.

    Article  PubMed  Google Scholar 

  23. Massoud TF, Gambhir SS. Integrating noninvasive molecular imaging into molecular medicine: an evolving paradigm. Trends Mol Med. 2007;13(5):183–91.

    Article  CAS  PubMed  Google Scholar 

  24. Kaliberov SA, Buchsbaum DJ. Chapter seven—cancer treatment with gene therapy and radiation therapy. Adv Cancer Res. 2012;115:221–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Guo XE, Ngo B, Modrek AS, Lee WH. Targeting tumor suppressor networks for cancer therapeutics. Curr Drug Targets. 2014;15(1):2–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Melero I, Gaudernack G, Gerritsen W, Huber C, Parmiani G, Scholl S, et al. Therapeutic vaccines for cancer: an overview of clinical trials. Nat Rev Clin Oncol. 2014;11(9):509–24.

    Article  CAS  PubMed  Google Scholar 

  27. Mankoff DA. A definition of molecular imaging. J Nucl Med. 2007;48(6):18N–21N.

    PubMed  Google Scholar 

  28. Weissleder R, Mahmood U. Molecular imaging. Radiology. 2001;219(2):316–33.

    Article  CAS  PubMed  Google Scholar 

  29. Zaidi H, Prasad R. Advances in multimodality molecular imaging. J Med Phys. 2009;34(3):122–8.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Yentz S, Wang TD. Molecular imaging for guiding oncologic prognosis and therapy in esophageal adenocarcinoma. Hosp Pract. 2011;39(2):97–106.

    Article  Google Scholar 

  31. Hellebust A, Richards-Kortum R. Advances in molecular imaging: targeted optical contrast agents for cancer diagnostics. Nanomedicine. 2012;7(3):429–45.

    Article  CAS  PubMed  Google Scholar 

  32. Chen ZY, Wang YX, Lin Y, Zhang JS, Yang F, Zhou QL, et al. Advance of molecular imaging technology and targeted imaging agent in imaging and therapy. Biomed Res Int. 2014;2014:819324.

    PubMed  PubMed Central  Google Scholar 

  33. Russell J, Tian J, Kinuya S, Shen B, Li XF. Molecular imaging for personalized medicine. Biomed Res Int. 2016;2016:5170159.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Willmann JK, van Bruggen N, Dinkelborg LM, Gambhir SS. Molecular imaging in drug development. Nat Rev Drug Discov. 2008;7(7):591–607.

    Article  CAS  PubMed  Google Scholar 

  35. Jimenez-Bonilla JF, Quirce R, Martinez-Rodriguez I, De Arcocha-Torres M, Carril JM, Banzo I. The role of PET/CT molecular imaging in the diagnosis of recurrence and surveillance of patients treated for non-small cell lung cancer. Diagnostics. 2016;6(4):36.

    Article  CAS  PubMed Central  Google Scholar 

  36. Jimenez-Bonilla JF, Quirce R, Martinez-Rodriguez I, Banzo I, Rubio-Vassallo AS, Del Castillo-Matos R, et al. Diagnosis of recurrence and assessment of post-recurrence survival in patients with extracranial non-small cell lung cancer evaluated by 18F-FDG PET/CT. Lung Cancer. 2013;81(1):71–6.

    Article  PubMed  Google Scholar 

  37. Puaux AL, Ong LC, Jin Y, Teh I, Hong M, Chow PK, et al. A comparison of imaging techniques to monitor tumor growth and cancer progression in living animals. Int J Mol Imag. 2011;2011:321538.

    Google Scholar 

  38. Sadikot RT, Blackwell TS. Bioluminescence imaging. Proc Am Thorac Soc. 2005;2(6):537–40. 11-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Becker W. Fluorescence lifetime imaging--techniques and applications. J Microsc. 2012;247(2):119–36.

    Article  CAS  PubMed  Google Scholar 

  40. Gupta N, Price PM, Aboagye EO. PET for in vivo pharmacokinetic and pharmacodynamic measurements. Eur J Cancer. 2002;38(16):2094–107.

    Article  CAS  PubMed  Google Scholar 

  41. Chouinard JA, Rousseau JA, Beaudoin JF, Vermette P, Lecomte R. Positron emission tomography detection of human endothelial cell and fibroblast monolayers: effect of pretreatment and cell density on 18FDG uptake. Vasc Cell. 2012;4(1):5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Hagan G, Southwood M, Treacy C, Ross RM, Soon E, Coulson J, et al. (18)FDG PET imaging can quantify increased cellular metabolism in pulmonary arterial hypertension: a proof-of-principle study. Pulm Circ. 2011;1(4):448–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Sengupta D, Pratx G. Imaging metabolic heterogeneity in cancer. Mol Cancer. 2016;15:4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Almuhaideb A, Papathanasiou N, Bomanji J. 18F-FDG PET/CT imaging in oncology. Ann Saudi Med. 2011;31(1):3–13.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Hu C, Liu CP, Cheng JS, Chiu YL, Chan HP, Peng NJ. Application of whole-body FDG-PET for cancer screening in a cohort of hospital employees. Medicine. 2016;95(44):e5131.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Plaxton NA, Brandon DC, Corey AS, Harrison CE, Karagulle Kendi AT, Halkar RK, et al. Characteristics and limitations of FDG PET/CT for imaging of squamous cell carcinoma of the head and neck: a comprehensive review of anatomy, metastatic pathways, and image findings. Am J Roentgenol. 2015;205(5):W519–31.

    Article  Google Scholar 

  47. Freedenberg MI, Badawi RD, Tarantal AF, Cherry SR. Performance and limitations of positron emission tomography (PET) scanners for imaging very low activity sources. Phys Med. 2014;30(1):104–10.

    Article  PubMed  Google Scholar 

  48. Pinilla I, Rodriguez-Vigil B, Gomez-Leon N, Integrated FDG. PET/CT: utility and applications in clinical oncology. Clin Med Oncol. 2008;2:181–98.

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Bar-Shalom R, Yefremov N, Guralnik L, Gaitini D, Frenkel A, Kuten A, et al. Clinical performance of PET/CT in evaluation of cancer: additional value for diagnostic imaging and patient management. J Nucl Med. 2003;44(8):1200–9.

    PubMed  Google Scholar 

  50. von Schulthess GK, Steinert HC, Hany TF, Integrated PET. CT: current applications and future directions. Radiology. 2006;238(2):405–22.

    Article  Google Scholar 

  51. Park JS, Yim JJ, Kang WJ, Chung JK, Yoo CG, Kim YW, et al. Detection of primary sites in unknown primary tumors using FDG-PET or FDG-PET/CT. BMC Res Notes. 2011;4:56.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Mirpour S, Mhlanga JC, Logeswaran P, Russo G, Mercier G, Subramaniam RM. The role of PET/CT in the management of cervical cancer. Am J Roentgenol. 2013;201(2):W192–205.

    Article  Google Scholar 

  53. Nedergaard MK, Michaelsen SR, Perryman L, Erler J, Poulsen HS, Stockhausen MT, et al. Comparison of (18)F-FET and (18)F-FLT small animal PET for the assessment of anti-VEGF treatment response in an orthotopic model of glioblastoma. Nucl Med Biol. 2016;43(3):198–205.

    Article  CAS  PubMed  Google Scholar 

  54. Borbely K, Wintermark M, Martos J, Fedorcsak I, Bognar L, Kasler M. The pre-requisite of a second-generation glioma PET biomarker. J Neurol Sci. 2010;298(1–2):11–6.

    Article  PubMed  Google Scholar 

  55. Deryugina EI, Quigley JP. Tumor angiogenesis: MMP-mediated induction of intravasation- and metastasis-sustaining neovasculature. Matrix Biol. 2015;44–46:94–112.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Hillen F, Griffioen AW. Tumour vascularization: sprouting angiogenesis and beyond. Cancer Metastasis Rev. 2007;26(3–4):489–502.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Lee SH, Jeong D, Han YS, Baek MJ. Pivotal role of vascular endothelial growth factor pathway in tumor angiogenesis. Ann Surg Treat Res. 2015;89(1):1–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Shibuya M. Vascular Endothelial Growth Factor (Vegf) and Its Receptor (VEGFR) signaling in angiogenesis: a crucial target for anti- and pro-angiogenic therapies. Genes Cancer. 2011;2(12):1097–105.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Niu G, Chen X. Vascular endothelial growth factor as an anti-angiogenic target for cancer therapy. Curr Drug Targets. 2010;11(8):1000–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Jeltsch M, Leppanen VM, Saharinen P, Alitalo K. Receptor tyrosine kinase-mediated angiogenesis. Cold Spring Harb Perspect Biol. 2013;5(9).

    Google Scholar 

  61. Narayanan S, Srinivas S. Incorporating VEGF-targeted therapy in advanced urothelial cancer. Ther Adv Med Oncol. 2017;9(1):33–45.

    Article  CAS  PubMed  Google Scholar 

  62. Hoff BA, Bhojani MS, Rudge J, Chenevert TL, Meyer CR, Galban S, et al. DCE and DW-MRI monitoring of vascular disruption following VEGF-trap treatment of a rat glioma model. NMR Biomed. 2012;25(7):935–42.

    Article  CAS  PubMed  Google Scholar 

  63. Padhani AR, Miles KA. Multiparametric imaging of tumor response to therapy. Radiology. 2010;256(2):348–64.

    Article  PubMed  Google Scholar 

  64. Michiels C. Physiological and pathological responses to hypoxia. Am J Pathol. 2004;164(6):1875–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Walsh JC, Lebedev A, Aten E, Madsen K, Marciano L, Kolb HC. The clinical importance of assessing tumor hypoxia: relationship of tumor hypoxia to prognosis and therapeutic opportunities. Antioxid Redox Signal. 2014;21(10):1516–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Muz B, de la Puente P, Azab F, Azab AK. The role of hypoxia in cancer progression, angiogenesis, metastasis, and resistance to therapy. Hypoxia. 2015;3:83–92.

    Article  PubMed  PubMed Central  Google Scholar 

  67. Hockel M, Vaupel P. Tumor hypoxia: definitions and current clinical, biologic, and molecular aspects. J Natl Cancer Inst. 2001;93(4):266–76.

    Article  CAS  PubMed  Google Scholar 

  68. Lopci E, Grassi I, Chiti A, Nanni C, Cicoria G, Toschi L, et al. PET radiopharmaceuticals for imaging of tumor hypoxia: a review of the evidence. Am J Nucl Med Mol Imaging. 2014;4(4):365–84.

    PubMed  PubMed Central  Google Scholar 

  69. Kelada OJ, Carlson DJ. Molecular imaging of tumor hypoxia with positron emission tomography. Radiat Res. 2014;181(4):335–49.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Rice SL, Roney CA, Daumar P, Lewis JS. The next generation of positron emission tomography radiopharmaceuticals in oncology. Semin Nucl Med. 2011;41(4):265–82.

    Article  PubMed  PubMed Central  Google Scholar 

  71. Fleming IN, Manavaki R, Blower PJ, West C, Williams KJ, Harris AL, et al. Imaging tumour hypoxia with positron emission tomography. Br J Cancer. 2015;112(2):238–50.

    Article  CAS  PubMed  Google Scholar 

  72. Signore A, Glaudemans AW. The molecular imaging approach to image infections and inflammation by nuclear medicine techniques. Ann Nucl Med. 2011;25(10):681–700.

    Article  PubMed  Google Scholar 

  73. Yamashita H, Kubota K, Mimori A. Clinical value of whole-body PET/CT in patients with active rheumatic diseases. Arthritis Res Ther. 2014;16(5):423.

    Article  PubMed  PubMed Central  Google Scholar 

  74. Basu S, Chryssikos T, Moghadam-Kia S, Zhuang H, Torigian DA, Alavi A. Positron emission tomography as a diagnostic tool in infection: present role and future possibilities. Semin Nucl Med. 2009;39(1):36–51.

    Article  PubMed  Google Scholar 

  75. Balink H, Bennink RJ, van Eck-Smit BL, Verberne HJ. The role of 18F-FDG PET/CT in large-vessel vasculitis: appropriateness of current classification criteria? Biomed Res Int. 2014;2014:687608.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Foley J, Mullan D, Mohan H, Schmidt K. Abdominal aortitis on PET CT: a case report and review of the literature. Int J Surg Case Rep. 2015;10:104–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Glaudemans AW, de Vries EF, Galli F, Dierckx RA, Slart RH, Signore A. The use of (18)F-FDG-PET/CT for diagnosis and treatment monitoring of inflammatory and infectious diseases. Clin Dev Immunol. 2013;2013:623036.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Lee TY, Kim MH, Park DH, Seo DW, Lee SK, Kim JS, et al. Utility of 18F-FDG PET/CT for differentiation of autoimmune pancreatitis with atypical pancreatic imaging findings from pancreatic cancer. Am J Roentgenol. 2009;193(2):343–8.

    Article  Google Scholar 

  79. Perlman SB, Hall BS, Reichelderfer M. PET/CT imaging of inflammatory bowel disease. Semin Nucl Med. 2013;43(6):420–6.

    Article  PubMed  Google Scholar 

  80. Karantanis D, Bogsrud TV, Wiseman GA, Mullan BP, Subramaniam RM, Nathan MA, et al. Clinical significance of diffusely increased 18F-FDG uptake in the thyroid gland. J Nucl Med. 2007;48(6):896–901.

    Article  CAS  PubMed  Google Scholar 

  81. Pichler BJ, Kolb A, Nagele T, Schlemmer HP. PET/MRI: paving the way for the next generation of clinical multimodality imaging applications. J Nucl Med. 2010;51(3):333–6.

    Article  PubMed  Google Scholar 

  82. Riola-Parada C, Garcia-Canamaque L, Perez-Duenas V, Garcerant-Tafur M, Carreras-Delgado JL, Simultaneous PET. MRI vs. PET/CT in oncology. A systematic review. Revista Espanola De Medicina Nuclear E Imagen Molecular. 2016;35(5):306–12.

    Article  CAS  PubMed  Google Scholar 

  83. Jiang L, Tu Y, Shi H. PET probes beyond (18)F-FDG. J Biomed Res. 2014;28(6):435–46.

    PubMed  PubMed Central  Google Scholar 

  84. Peck M, Pollack HA, Friesen A, Muzi M, Shoner SC, Shankland EG, et al. Applications of PET imaging with the proliferation marker [18F]-FLT. Q J Nucl Med Mol Imaging. 2015;59(1):95–104.

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Laing RE, Nair-Gill E, Witte ON, Radu CG. Visualizing cancer and immune cell function with metabolic positron emission tomography. Curr Opin Genet Dev. 2010;20(1):100–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Chen W, Cloughesy T, Kamdar N, Satyamurthy N, Bergsneider M, Liau L, et al. Imaging proliferation in brain tumors with 18F-FLT PET: comparison with 18F-FDG. J Nucl Med. 2005;46(6):945–52.

    CAS  PubMed  Google Scholar 

  87. Juergens RA, Zukotynski KA, Singnurkar A, Snider DP, Valliant JF, Gulenchyn KY. Imaging biomarkers in immunotherapy. Biomark Cancer. 2016;8(Suppl 2):1–13.

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Lucas R, Lopes Dias J, Cunha TM. Added value of diffusion-weighted MRI in detection of cervical cancer recurrence: comparison with morphologic and dynamic contrast-enhanced MRI sequences. Diagn Interv Radiol. 2015;21(5):368–75.

    Article  PubMed  PubMed Central  Google Scholar 

  89. Mazaheri Y, Akin O, Hricak H. Dynamic contrast-enhanced magnetic resonance imaging of prostate cancer: a review of current methods and applications. World J Radiol. 2017;9(12):416–25.

    Article  PubMed  PubMed Central  Google Scholar 

  90. Harry VN, Semple SI, Parkin DE, Gilbert FJ. Use of new imaging techniques to predict tumour response to therapy. Lancet Oncol. 2010;11(1):92–102.

    Article  PubMed  Google Scholar 

  91. Chan CWH, Law BMH, WKW S, Chow KM, MMY W. Novel strategies on personalized medicine for breast cancer treatment: an update. Int J Mol Sci. 2017;18(11):2423.

    Article  CAS  PubMed Central  Google Scholar 

  92. Luker KE, Smith MC, Luker GD, Gammon ST, Piwnica-Worms H, Piwnica-Worms D. Kinetics of regulated protein-protein interactions revealed with firefly luciferase complementation imaging in cells and living animals. Proc Natl Acad Sci U S A. 2004;101(33):12288–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Thompson SM, Callstrom MR, Knudsen BE, Anderson JL, Sutor SL, Butters KA, et al. Molecular bioluminescence imaging as a noninvasive tool for monitoring tumor growth and therapeutic response to MRI-guided laser ablation in a rat model of hepatocellular carcinoma. Investig Radiol. 2013;48(6):413–21.

    Article  CAS  Google Scholar 

  94. Youn H, Hong KJ. In vivo noninvasive molecular imaging for immune cell tracking in small animals. Immune Netw. 2012;12(6):223–9.

    Article  PubMed  PubMed Central  Google Scholar 

  95. Vantaggiato C, Dell’Omo G, Ramachandran B, Manni I, Radaelli E, Scanziani E, et al. Bioluminescence imaging of estrogen receptor activity during breast cancer progression. Am J Nucl Med Mol Imaging. 2016;6(1):32–41.

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Kim KI, Chung HK, Park JH, Lee YJ, Kang JH. Alpha-fetoprotein-targeted reporter gene expression imaging in hepatocellular carcinoma. World J Gastroenterol. 2016;22(27):6127–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Gingrich JR, Barrios RJ, Kattan MW, Nahm HS, Finegold MJ, Greenberg NM. Androgen-independent prostate cancer progression in the TRAMP model. Cancer Res. 1997;57(21):4687–91.

    CAS  PubMed  Google Scholar 

  98. Lyons SK, Lim E, Clermont AO, Dusich J, Zhu L, Campbell KD, et al. Noninvasive bioluminescence imaging of normal and spontaneously transformed prostate tissue in mice. Cancer Res. 2006;66(9):4701–7.

    Article  CAS  PubMed  Google Scholar 

  99. Yamaoka N, Kawasaki Y, Xu Y, Yamamoto H, Terada N, Okamura H, et al. Establishment of in vivo fluorescence imaging in mouse models of malignant mesothelioma. Int J Oncol. 2010;37(2):273–9.

    CAS  PubMed  Google Scholar 

  100. Pham W, Xie J, Gore JC. Tracking the migration of dendritic cells by in vivo optical imaging. Neoplasia. 2007;9(12):1130–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Crane LM, Themelis G, Pleijhuis RG, Harlaar NJ, Sarantopoulos A, Arts HJ, et al. Intraoperative multispectral fluorescence imaging for the detection of the sentinel lymph node in cervical cancer: a novel concept. Mol Imaging Biol. 2011;13(5):1043–9.

    Article  PubMed  Google Scholar 

  102. Wang KK. Detection and staging of esophageal cancers. Curr Opin Gastroenterol. 2004;20(4):381–5.

    Article  PubMed  PubMed Central  Google Scholar 

  103. Hoogstins CE, Weixler B, Boogerd LS, Hoppener DJ, Prevoo HA, Sier CF, et al. In search for optimal targets for intraoperative fluorescence imaging of peritoneal metastasis from colorectal cancer. Biomark cancer. 2017;9:1179299X17728254.

    Article  PubMed  PubMed Central  Google Scholar 

  104. Nishizawa K, Nishiyama H, Oishi S, Tanahara N, Kotani H, Mikami Y, et al. Fluorescent imaging of high-grade bladder cancer using a specific antagonist for chemokine receptor CXCR4. Int J Cancer. 2010;127(5):1180–7.

    Article  CAS  PubMed  Google Scholar 

  105. Farkona S, Diamandis EP, Blasutig IM. Cancer immunotherapy: the beginning of the end of cancer? BMC Med. 2016;14:73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Carotta S. Targeting NK cells for anticancer immunotherapy: clinical and preclinical approaches. Front Immunol. 2016;7:152.

    Article  PubMed  PubMed Central  Google Scholar 

  107. Verbik D, Joshi S. Immune cells and cytokines – their role in cancer-immunotherapy (review). Int J Oncol. 1995;7(2):205–23.

    CAS  PubMed  Google Scholar 

  108. Gangadaran P, Ahn BC. Molecular imaging: a useful tool for the development of natural killer cell-based immunotherapies. Front Immunol. 2017;8:1090.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Alsaab HO, Sau S, Alzhrani R, Tatiparti K, Bhise K, Kashaw SK, et al. PD-1 and PD-L1 checkpoint signaling inhibition for cancer immunotherapy: mechanism, combinations, and clinical outcome. Front Pharmacol. 2017;8:561.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Riella LV, Paterson AM, Sharpe AH, Chandraker A. Role of the PD-1 pathway in the immune response. Am J Transplant. 2012;12(10):2575–87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Black M, Barsoum IB, Truesdell P, Cotechini T, Macdonald-Goodfellow SK, Petroff M, et al. Activation of the PD-1/PD-L1 immune checkpoint confers tumor cell chemoresistance associated with increased metastasis. Oncotarget. 2016;7(9):10557–67.

    Article  PubMed  PubMed Central  Google Scholar 

  112. Hamanishi J, Konishi I. Targeting the PD-1/PD-L1 immune checkpoint signal – a new treatment strategy for cancer. Gan To Kagaku Ryoho. 2014;41(9):1071–6.

    PubMed  Google Scholar 

  113. Walunas TL, Lenschow DJ, Bakker CY, Linsley PS, Freeman GJ, Green JM, et al. CTLA-4 can function as a negative regulator of T cell activation. Immunity. 1994;1(5):405–13.

    Article  CAS  PubMed  Google Scholar 

  114. Grosso JF, Jure-Kunkel MN. CTLA-4 blockade in tumor models: an overview of preclinical and translational research. Cancer Immun. 2013;13:5.

    PubMed  PubMed Central  Google Scholar 

  115. Ehlerding EB, England CG, McNeel DG, Cai W. Molecular imaging of immunotherapy targets in cancer. J Nucl Med. 2016;57(10):1487–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Khalil DN, Smith EL, Brentjens RJ, Wolchok JD. The future of cancer treatment: immunomodulation, CARs and combination immunotherapy. Nat Rev Clin Oncol. 2016;13(5):273–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Spranger S, Spaapen RM, Zha Y, Williams J, Meng Y, Ha TT, et al. Up-regulation of PD-L1, IDO, and T(regs) in the melanoma tumor microenvironment is driven by CD8(+) T cells. Sci Transl Med. 2013;5(200):200ra116.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Thompson RH, Gillett MD, Cheville JC, Lohse CM, Dong H, Webster WS, et al. Costimulatory molecule B7-H1 in primary and metastatic clear cell renal cell carcinoma. Cancer. 2005;104(10):2084–91.

    Article  CAS  PubMed  Google Scholar 

  119. Velcheti V, Schalper KA, Carvajal DE, Anagnostou VK, Syrigos KN, Sznol M, et al. Programmed death ligand-1 expression in non-small cell lung cancer. Lab Investig. 2014;94(1):107–16.

    Article  CAS  PubMed  Google Scholar 

  120. He J, Hu Y, Hu M, Li B. Development of PD-1/PD-L1 pathway in tumor immune microenvironment and treatment for non-small cell lung cancer. Sci Rep. 2015;5:13110.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Lee HT, Lee JY, Lim H, Lee SH, Moon YJ, Pyo HJ, et al. Molecular mechanism of PD-1/PD-L1 blockade via anti-PD-L1 antibodies atezolizumab and durvalumab. Sci Rep. 2017;7(1):5532.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Gulley JL, Berzofsky JA, Butler MO, Cesano A, Fox BA, Gnjatic S, et al. Immunotherapy biomarkers 2016: overcoming the barriers. J Immunother Cancer. 2017;5(1):29.

    Article  PubMed  PubMed Central  Google Scholar 

  123. Madore J, Vilain RE, Menzies AM, Kakavand H, Wilmott JS, Hyman J, et al. PD-L1 expression in melanoma shows marked heterogeneity within and between patients: implications for anti-PD-1/PD-L1 clinical trials. Pigment Cell Melanoma Res. 2015;28(3):245–53.

    Article  CAS  PubMed  Google Scholar 

  124. Maute RL, Gordon SR, Mayer AT, McCracken MN, Natarajan A, Ring NG, et al. Engineering high-affinity PD-1 variants for optimized immunotherapy and immuno-PET imaging. Proc Natl Acad Sci U S A. 2015;112(47):E6506–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Chatterjee S, Lesniak WG, Gabrielson M, Lisok A, Wharram B, Sysa-Shah P, et al. A humanized antibody for imaging immune checkpoint ligand PD-L1 expression in tumors. Oncotarget. 2016;7(9):10215–27.

    Article  PubMed  PubMed Central  Google Scholar 

  126. Kudo M. Immuno-oncology in hepatocellular carcinoma: 2017 update. Oncology. 2017;93(Suppl 1):147–59.

    Article  PubMed  Google Scholar 

  127. Raufi A, Tirona MT. Prospect of the use of checkpoint inhibitors in hepatocellular cancer treatments. Cancer Manag Res. 2017;9:19–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Ribas A, Kefford R, Marshall MA, Punt CJ, Haanen JB, Marmol M, et al. Phase III randomized clinical trial comparing tremelimumab with standard-of-care chemotherapy in patients with advanced melanoma. J Clin Oncol. 2013;31(5):616–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Antonia S, Goldberg SB, Balmanoukian A, Chaft JE, Sanborn RE, Gupta A, et al. Safety and antitumour activity of durvalumab plus tremelimumab in non-small cell lung cancer: a multicentre, phase 1b study. Lancet Oncol. 2016;17(3):299–308.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Ribas A, Benz MR, Allen-Auerbach MS, Radu C, Chmielowski B, Seja E, et al. Imaging of CTLA4 blockade-induced cell replication with (18)F-FLT PET in patients with advanced melanoma treated with tremelimumab. J Nucl Med. 2010;51(3):340–6.

    Article  CAS  PubMed  Google Scholar 

  131. Ehlerding EB, England CG, Majewski RL, Valdovinos HF, Jiang D, Liu G, et al. ImmunoPET imaging of CTLA-4 expression in mouse models of non-small cell lung cancer. Mol Pharm. 2017;14(5):1782–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Kudo M. Immune checkpoint blockade in hepatocellular carcinoma: 2017 update. Liver Cancer. 2016;6(1):1–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Kamta J, Chaar M, Ande A, Altomare DA, Ait-Oudhia S. Advancing cancer therapy with present and emerging immuno-oncology approaches. Front Oncol. 2017;7:64.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Najmi Varzaneh, F., Baradaran Noveiry, B. (2020). Cancer Molecular and Functional Imaging. In: Rezaei, N. (eds) Cancer Immunology. Springer, Cham. https://doi.org/10.1007/978-3-030-30845-2_31

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-30845-2_31

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-30844-5

  • Online ISBN: 978-3-030-30845-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics