Skip to main content

Part of the book series: Springer Theses ((Springer Theses))

  • 210 Accesses

Abstract

In this chapter, we demonstrate that the combination of a unique cross-sectional polishing tool and SThM provides many advantages for nanothermal investigations of buried materials properties. From isotropic and anisotropic thin films, to thermal interface materials, nanothermal properties are extracted using appropriate models.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Mack CA (2011) IEEE Trans Semicond Manuf 24:202–207

    Article  Google Scholar 

  2. Majumdar A (2009) Nat Nano 4:214–215

    Article  Google Scholar 

  3. Volz S (2007) Microscale and nanoscale heat transfer. Springer, Berlin

    Google Scholar 

  4. Gomes S, Assy A, Chapuis P-O (2015) Phys Status Solidi (a) 212:477–494

    Google Scholar 

  5. Jeong W, Hur S, Meyhofer E, Reddy P (2015) Nanoscale Microscale Thermophys Eng 19:279–302

    Article  ADS  Google Scholar 

  6. Jung E, Hwang G, Chung J, Kwon O, Han J, Moon Y-T, Seong T-Y (2015) Appl Phys Lett 106:041114

    Article  ADS  Google Scholar 

  7. Juszczyk J, Krzywiecki M, Kruszka R, Bodzenta J (2013) Ultramicroscopy 135:95–98

    Article  Google Scholar 

  8. Lee T, Guo X, Shen G, Ji Y, Wang G, Du J, Wang X, Gao G, Altes A, Balk L (2002) Microelectron Reliab 42:1711–1714

    Article  Google Scholar 

  9. Luo K, Herrick RW, Majumdar A, Petroff P (1997) Appl Phys Lett 71:1604–1606

    Article  ADS  Google Scholar 

  10. Park K, Krivoy E, Nair H, Bank S, Yu E (2015) Nanotechnology 26:265701

    Article  ADS  Google Scholar 

  11. Bosse JL, Grishin I, Huey BD, Kolosov OV (2014) Appl Surf Sci 314:151–157

    Article  ADS  Google Scholar 

  12. Robson AJ, Grishin I, Young RJ, Sanchez AM, Kolosov OV, Hayne M (2013) ACS Appl Mater Interfaces 5:3241–5

    Article  Google Scholar 

  13. Kolosov OV, Grishin I, Jones R (2011) Nanotechnology 22:8

    Article  Google Scholar 

  14. Gomes S, David L, Lysenko V, Descamps A, Nychyporuk T, Raynaud M (2007) J Phys D-Appl Phys 40:6677–6683

    Article  ADS  Google Scholar 

  15. Heiderhoff R, Li H, Riedl T (2013) Microelectron Reliab 53:1413–1417

    Article  Google Scholar 

  16. Juszczyk J, Kazmierczak-Balata A, Firek P, Bodzenta J (2017) Ultramicroscopy 175(81–86):125

    Google Scholar 

  17. Makris A, Haeger T, Heiderhoff R, Riedl T (2016) RSC Adv 6:94193–94199

    Article  Google Scholar 

  18. Oehme M, Buca D, Kostecki K, Wirths S, Hollander B, Kasper E, Schulze J (2013) J Cryst Growth 384:71–76

    Article  ADS  Google Scholar 

  19. Silvestri HH, Bracht H, Hansen JL, Larsen AN, Haller EE (2006) Semicond Sci Technol 21:758

    Article  ADS  Google Scholar 

  20. Iskandar A, Abou-Khalil A, Kazan M, Kassem W, Volz S (2015) J Appl Phys 117:125102

    Article  ADS  Google Scholar 

  21. Muzychka YS (2014) J Thermophys Heat Transf 28:313–319

    Article  Google Scholar 

  22. Muzychka YS, Yovanovich MM, Culham JR (2004) J Thermophys Heat Transf 18:45–51

    Article  Google Scholar 

  23. Frommhold A, Manyam J, Palmer RE, Robinson APG (2012) Microelectron Eng 98:552–555

    Article  Google Scholar 

  24. Frommhold A, Palmer RE, Robinson AP (2013) J Micro/Nanolithography MEMS MOEMS 12:033003–033003

    Google Scholar 

  25. Al Mohtar A, Tessier G, Ritasalo R, Matvejeff M, Stormonth-Darling J, Dobson P, Chapuis P, Gomes S, Roger J (2017) Thin Solid Films 642:157–162

    Article  ADS  Google Scholar 

  26. Goodson K, Flik M, Su L, Antoniadis D (1994) J Heat Transf 116:317–324

    Article  Google Scholar 

  27. Chen J, Zhang G, Li B (2012) J Appl Phys 112:064319

    Article  ADS  Google Scholar 

  28. Bhargava N, Gupta JP, Faleev N, Wielunski L, Kolodzey J (2017) J Electron Mater 46:1620–1627

    Article  ADS  Google Scholar 

  29. Kormos L, Kratzer M, Kostecki K, Oehme M, Sikola T, Kasper E, Schulze J, Teichert C (2017) Surf Interface Anal 49:297–302

    Article  Google Scholar 

  30. Wang W, Li L, Zhou Q, Pan J, Zhang Z, Tok ES, Yeo Y-C (2014) Appl Surf Sci 321:240–244

    Article  ADS  Google Scholar 

  31. Mahmodi H, Hashim MR (2016) Mater Res Express 3:106403

    Article  ADS  Google Scholar 

  32. Khatami S, Aksamija Z (2016) Phys Rev Appl 6:126

    Article  Google Scholar 

  33. Uchida N, Maeda T, Lieten RR, Okajima S, Ohishi Y, Takase R, Ishimaru M, Locquet J-P (2015) Appl Phys Lett 107:232105

    Article  ADS  Google Scholar 

  34. Cheaito R, Duda JC, Beechem TE, Hattar K, Ihlefeld JF, Medlin DL, Rodriguez MA, Campion MJ, Piekos ES, Hopkins PE (2012) Phys Rev Lett 109:195901

    Article  ADS  Google Scholar 

  35. Regner KT, Sellan DP, Su Z, Amon CH, McGaughey AJ, Malen JA (2013) Nat Commun 4:1640

    Article  ADS  Google Scholar 

  36. Aksamija Z, Knezevic I, (2013) Phys Rev B 88:155318

    Google Scholar 

  37. Chen J, Zhang G, Li B (2009) Appl Phys Lett 95:073117

    Article  ADS  Google Scholar 

  38. Garg J, Bonini N, Kozinsky B, Marzari N (2011) Phys Rev Lett 106:045901

    Article  ADS  Google Scholar 

  39. Ni Y, Le Khanh H, Chalopin Y, Bai J, Lebarny P, Divay L, Volz S (2012) Appl Phys Lett 100:193118

    Article  ADS  Google Scholar 

  40. Menges F, Riel H, Stemmer A, Gotsmann B (2016) Rev Sci Instrum 87(074902):127

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean Spièce .

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Spièce, J. (2019). Three Dimensional Mapping of Thermal Properties. In: Quantitative Mapping of Nanothermal Transport via Scanning Thermal Microscopy. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-030-30813-1_5

Download citation

Publish with us

Policies and ethics