Skip to main content

SThM Experimental Models and Setups for Exploring Nanoscale Heat Transport

  • Chapter
  • First Online:
Quantitative Mapping of Nanothermal Transport via Scanning Thermal Microscopy

Part of the book series: Springer Theses ((Springer Theses))

  • 261 Accesses

Abstract

Over the last two decades scanning probe microscopy has become an indispensable tool supporting developments in the nanoscience and nanotechnology thanks to its atomic-scale spatial resolution and sensitivity to a wide variety of physical properties. In particular, scanning thermal microscopy (SThM) has enabled measurements of heat transport and temperatures at arbitrary selected points of the probed surface with lateral resolution down to a few nm. SThM’s outstanding performance is largely due to a range of nanofabricated probes that are both sensitive and easy to use. From biological applications to active semiconductor devices, SThM is becoming the ultimate tool for probing thermal properties at the nanoscale [1,2,3,4,5].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Cahill DG, Ford WK, Goodson KE, Mahan GD, Majumdar A, Maris HJ, Merlin R, Phillpot SR (2003) J Appl Phys 93:793–818

    Google Scholar 

  2. Gomes S, Assy A, Chapuis P-O (2015) Phys Status Solidi (a) 212:477–494

    Google Scholar 

  3. Kim MM, Giry A, Mastiani M, Rodrigues GO, Reis A, Mandin P (2015) Microelectron Eng 148:129–142

    Google Scholar 

  4. Majumdar A (1999) Annu Rev Mater Sci 29:505–585

    Google Scholar 

  5. Shi L, Majumdar A (2002) J Heat Transf 124:329

    Google Scholar 

  6. Dobson PS, Weaver JMR, Mills G (2007) IEEE Sens 708–711

    Google Scholar 

  7. Mills G, Zhou H, Midha A, Donaldson L, Weaver JMR (1998) Appl Phys Lett 72:2900–2902

    Google Scholar 

  8. Pumarol ME, Rosamond MC, Tovee P, Petty MC, Zeze DA, Falko V, Kolosov OV (2012) Nano Lett 12:2906–2911

    Google Scholar 

  9. Hinz M, Marti O, Gotsmann B, Lantz MA, Durig U (2008) Appl Phys Lett 92:043122

    Google Scholar 

  10. Zhang Y, Dobson P, Weaver J (2012) J Vac Sci Technol B 30:010601

    Google Scholar 

  11. Tovee PD, Kolosov OV (2013) Nanotechnology 24:8

    Article  ADS  Google Scholar 

  12. Masters ND, Ye W, King WP (2005) Phys Fluids 17:100615

    Google Scholar 

  13. Mu L, Li Y, Mehra N, Ji T, Zhu J (2017) ACS Appl Mater Interfaces 9:12138–12145

    Google Scholar 

  14. Xu D, Zhang Y, Zhou H, Meng Y, Wang S (2016) Holzforschung 70

    Google Scholar 

  15. Dawson A, Rides M, Maxwell AS, Cuenat A, Samano AR (2015) Polym Test 41:198–208

    Google Scholar 

  16. Crossley S, Usui T, Nair B, Kar-Narayan S, Moya X, Hirose S, Ando A, Mathur ND (2016) Appl Phys Lett 108:032902

    Google Scholar 

  17. Wielgoszewski G, Paletko P, Tomaszewski D, Zaborowski M, Jozwiak G, Kopiec D, Gotszalk T, Grabiec P (2015) Micron 79:93–100

    Article  Google Scholar 

  18. Park K, Krivoy E, Nair H, Bank S, Yu E (2015) Nanotechnology 26:265701

    Article  ADS  Google Scholar 

  19. Tovee P, Pumarol M, Zeze D, Kjoller K, Kolosov O (2012) J Appl Phys 112:114317

    Google Scholar 

  20. Poon S, Spiéce J, Robson A, Kolosov OV, Thompson S (2017) In: 2017 IEEE international magnetics conference (INTERMAG), pp 1–2

    Google Scholar 

  21. Ramiandrisoa L, Allard A, Joumani Y, Hay B, Gomes S (2017) Rev Sci Instrum 88:125115

    Google Scholar 

  22. Chen G (2000) Int J Therm Sci 39:471–480

    Google Scholar 

  23. Maxim N, Mark CR, Andrew JG, Oleg VK, Vladimir GD, Dagou AZ (2017) J Phys D: Appl Phys 50:494004

    Google Scholar 

  24. Timofeeva M, Bolshakov A, Tovee PD, Zeze DA, Dubrovskii VG, Kolosov OV (2016) Ultramicroscopy 162:42–51

    Article  Google Scholar 

  25. Cahill DG, Goodson K, Majumdar A (2002) J Heat Transf 124:223–241

    Google Scholar 

  26. Assy A, Gomes S (2015) Appl Phys Lett 107:043105

    Google Scholar 

  27. Battaglia JL, Saci A, De I, Cecchini R, Selmo S, Fanciulli M, Cecchi S, Longo M (2017) Phys Status Solidi (a) 214:1600500

    Google Scholar 

  28. Kazmierczak-Balata A, Juszczyk J, Trefon-Radziejewska D, Bodzenta J (2017) J Appl Phys 121:114502

    Google Scholar 

  29. Ge Y, Zhang Y, Booth JA, Weaver JM, Dobson PS (2016) Nanotechnology 27:325503

    Article  Google Scholar 

  30. Menges F, Riel H, Stemmer A, Gotsmann B (2012) Nano Lett 12:596–601

    Google Scholar 

  31. Anis-ur-Rehman M, Maqsood A (2003) Int J Thermophys 24:867–883

    Google Scholar 

  32. Glassbrenner C, Slack GA (1964) Phys Rev 134:A1058

    Google Scholar 

  33. Jeong C, Datta S, Lundstrom M (2012) J Appl Phys 111:093708

    Google Scholar 

  34. Regner KT, Sellan DP, Su Z, Amon CH, McGaughey AJ, Malen JA (2013) Nat Commun 4:1640

    Google Scholar 

  35. Prasher RS, Phelan PE (2006) J Appl Phys 100

    Google Scholar 

  36. Hoogeboom-Pot KM, Hernandez-Charpak JN, Gu X, Frazer TD, Anderson EH, Chao W, Falcone RW, Yang R, Murnane MM, Kapteyn HC et al (2015) Proc Natl Acad Sci 112:4846–4851

    Google Scholar 

  37. Wang X, Huang B (2014) Sci Rep 4:6399

    Google Scholar 

  38. Gotsmann B, Lantz MA, Knoll A, Dürig U (2010) Nanotechnology 121–160

    Google Scholar 

  39. Robinson BJ, Kay ND, Kolosov OV (2013) Langmuir 29:7735–7742

    Article  Google Scholar 

  40. Robinson BJ, Kolosov OV (2014) Nanoscale 6:10806–10816

    Article  ADS  Google Scholar 

  41. Dinelli F, Biswas SK, Briggs GAD, Kolosov OV (2000) Phys Rev B 61:13995–14006

    Google Scholar 

  42. Grishin I, Huey BD, Kolosov OV (2013) ACS Appl Mater Interfaces 5:11441–11445

    Google Scholar 

  43. Kolosov O, Yamanaka K (1993) Jpn J Appl Phys Part 2-Lett 32:L1095–L1098

    Google Scholar 

  44. Burnham NA, Colton RJ, Pollock HM (1993) Nanotechnology 4:64

    Article  ADS  Google Scholar 

  45. Capella B, Baschieri P, Frediani C, Miccoli P, Ascoli C (1997) IEEE Eng Med Biol Mag 16:58–65

    Google Scholar 

  46. Dinelli F, Castell MR, Ritchie DA, Mason NJ, Briggs GAD, Kolosov OV (2000) Philos Mag A Phys Condens Matter Struct Defects Mech Prop 80:2299–2323

    Google Scholar 

  47. Fischer-Cripps AC (2007) Introduction to contact mechanics. Mechanical engineering series. Springer, Berlin

    Book  Google Scholar 

  48. Derjaguin BV, Muller VM, Toporov YP (1975) J Colloid Interface Sci 53:314–326

    Google Scholar 

  49. Kiracofe D, Raman A (2012) Phys Rev B 86

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean Spièce .

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Spièce, J. (2019). SThM Experimental Models and Setups for Exploring Nanoscale Heat Transport. In: Quantitative Mapping of Nanothermal Transport via Scanning Thermal Microscopy. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-030-30813-1_3

Download citation

Publish with us

Policies and ethics