Skip to main content

Part of the book series: Springer Theses ((Springer Theses))

  • 205 Accesses

Abstract

The quest of nanotechnology can be divided in two essential parts: the continuing down sizing of the systems of interests on one hand, and the hope of discovery of novel properties appearing at the nanoscale on the other hand. Both trends coexisted since the early times of nanoscale research with, for example, the invention of Scanning Tunneling Microscopy (STM) [1], which enables materials study and manipulation at the atomic level, and the discovery of electronic properties of silicon paving the way for our contemporary computer era.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Binnig G, Rohrer H (1982) Helv Phys Acta 55:726–735

    Google Scholar 

  2. Binnig G, Quate CF, Gerber C (1986) Phys Rev Lett 56:930–933

    Google Scholar 

  3. Williams CC, Wickramasinghe HK (1986) Appl Phys Lett 49:1587–1589

    Google Scholar 

  4. Kolosov O, Yamanaka K (1993) Jpn J Appl Phys Part 2-Lett 32:L1095–L1098

    Google Scholar 

  5. Majumdar A (2009) Nat Nano 4:214–215

    Google Scholar 

  6. Chen G (2000) Int J Therm Sci 39:471–480

    Google Scholar 

  7. Cahill DG, Ford WK, Goodson KE, Mahan GD, Majumdar A, Maris HJ, Merlin R, Phillpot SR (2003) J Appl Phys 93:793–818

    Google Scholar 

  8. Gomes S, Assy A, Chapuis P-O (2015) Phys Status Solidi (a) 212:477–494

    Google Scholar 

  9. Abad B, Borca-Tasciuc D-A, Martin-Gonzalez M (2017) Renew Sustain Energy Rev 76:1348–1370

    Google Scholar 

  10. Lyeo HK, Cahill DG (2006) Phys Rev B 73

    Google Scholar 

  11. Zhu G, Liu J, Zheng Q, Zhang R, Li D, Banerjee D, Cahill DG (2016) Nat Commun 7:13211

    Google Scholar 

  12. Hofmeister AM, Whittington AG (2012) J Non-Cryst Solids 358:1072–1082

    Google Scholar 

  13. Shahil KM, Balandin AA (2012) Nano Lett 12:861–867

    Google Scholar 

  14. Freedman JP, Leach JH, Preble EA, Sitar Z, Davis RF, Malen JA (2013) Sci Rep 3

    Google Scholar 

  15. Regner KT, Sellan DP, Su Z, Amon CH, McGaughey AJ, Malen JA (2013) Nat Commun 4:1640

    Google Scholar 

  16. Chen Z, Shan X, Guan Y, Wang S, Zhu J-J, Tao N (2015) ACS Nano 9:11574–11581

    Article  Google Scholar 

  17. Balandin AA (2011) Nat Mater 10:569–581

    Google Scholar 

  18. Malekpour H, Balandin AA (2017) J Raman Spectrosc. https://doi.org/10.1002/jrs.5230

    Article  ADS  Google Scholar 

  19. Wagner MR, Graczykowski B, Reparaz JS, El Sachat A, Sledzinska M, Alzina F, Sotomayor Torres CM (2016) Nano Lett 16:5661–5668

    Google Scholar 

  20. Cretin B, Gomes S, Trannoy N, Vairac P (2007) Microscale Nanoscale Heat Transf 107:181–238

    Google Scholar 

  21. Gehring P, Harzheim A, Spiece J, Sheng Y, Rogers G, Evangeli C, Mishra A, Robinson BJ, Porfyrakis K, Warner JH, Kolosov OV, Briggs GAD, Mol JA (2017) Nano Lett 17:7055–7061

    Google Scholar 

  22. Kaviany M (2014) Heat transfer physics. Cambridge University Press, Cambridge

    Google Scholar 

  23. Kim K, Song B, Fernandez-Hurtado V, Lee W, Jeong W, Cui L, Thompson D, Feist J, Reid MTH, Garcia-Vidal FJ, Cuevas JC, Meyhofer E, Reddy P (2015) Nature 528:387

    Article  ADS  Google Scholar 

  24. Volz S (2007) Microscale and nanoscale heat transfer. Springer, Berlin

    Google Scholar 

  25. Asheghi M, Leung Y, Wong S, Goodson K (1997) Appl Phys Lett 71:1798–1800

    Google Scholar 

  26. Prasher R (2005) Nano Lett 5:2155–2159

    Google Scholar 

  27. Prasher RS, Phelan PE (2006) J Appl Phys 100

    Google Scholar 

  28. Hu Y, Zeng L, Minnich AJ, Dresselhaus MS, Chen G (2015) Nat Nanotechnol 10:701

    Google Scholar 

  29. Hoogeboom-Pot KM, Hernandez-Charpak JN, Gu X, Frazer TD, Anderson EH, Chao W, Falcone RW, Yang R, Murnane MM, Kapteyn HC et al (2015) Proc Natl Acad Sci 112:4846–4851

    Google Scholar 

  30. Siemens ME, Li Q, Yang R, Nelson KA, Anderson EH, Murnane MM, Kapteyn HC (2010) Nat Mater 9:26

    Google Scholar 

  31. Kapitza P (1941) Phys Rev 60:354

    Google Scholar 

  32. Pernot G, Stoffel M, Savic I, Pezzoli F, Chen P, Savelli G, Jacquot A, Schumann J, Denker U, Mönch I et al (2010) Nat Mater 9:491

    Google Scholar 

  33. Prasher R (2009) Appl Phys Lett 94

    Google Scholar 

  34. Hinz M, Marti O, Gotsmann B, Lantz MA, Durig U (2008) Appl Phys Lett 92:043122

    Google Scholar 

  35. Cahill DG, Braun PV, Chen G, Clarke DR, Fan S, Goodson KE, Keblinski P, King WP, Mahan GD, Majumdar A et al (2014) Appl Phys Rev 1:011305

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean Spièce .

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Spièce, J. (2019). Introduction. In: Quantitative Mapping of Nanothermal Transport via Scanning Thermal Microscopy. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-030-30813-1_1

Download citation

Publish with us

Policies and ethics