Skip to main content

On Relevant Equilibria in Reachability Games

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 11674))

Abstract

We study multiplayer reachability games played on a finite directed graph equipped with target sets, one for each player. In those reachability games, it is known that there always exists a Nash equilibrium (NE) and a subgame perfect equilibrium (SPE). But sometimes several equilibria may coexist such that in one equilibrium no player reaches his target set whereas in another one several players reach it. It is thus very natural to identify “relevant” equilibria. In this paper, we consider different notions of relevant equilibria including Pareto optimal equilibria and equilibria with high social welfare. We provide complexity results for various related decision problems.

Research partially supported by the PDR project “Subgame perfection in graph games” (F.R.S.-FNRS) and by COST Action 16228 “GAMENET” (European Cooperation in Science and Technology).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    We can easily adapt this definition to histories.

  2. 2.

    For convenience, we prefer to say that p is Pareto optimal in \(\mathrm{Plays}(v_0)\) rather than in P.

  3. 3.

    In the qualitative setting, each player obtains a gain that he wants to maximize: either 1 (if he visits his target set) or 0 (otherwise), all definitions are adapted accordingly.

  4. 4.

    Satisfying the conditions is either satisfying the constraints (Problems 1 and 2) or having a cost profile which is Pareto optimal (Problem 3).

References

  1. Bouyer, P., Markey, N., Stan, D.: Mixed Nash equilibria in concurrent terminal-reward games. In: 34th International Conference on Foundation of Software Technology and Theoretical Computer Science, FSTTCS 2014, 15–17 December 2014, New Delhi, India, pp. 351–363 (2014)

    Google Scholar 

  2. Brenguier, R., Raskin, J.-F.: Pareto curves of multidimensional mean-payoff games. In: Kroening, D., Păsăreanu, C.S. (eds.) CAV 2015. LNCS, vol. 9207, pp. 251–267. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-21668-3_15

    Chapter  Google Scholar 

  3. Brihaye, T., Bruyère, V., De Pril, J., Gimbert, H.: On subgame perfection in quantitative reachability games. Logical Methods Comput. Sci. 9(1) (2012)

    Google Scholar 

  4. Brihaye, T., Bruyère, V., Goeminne, A., Raskin, J.: Constrained existence problem for weak subgame perfect equilibria with \(\omega \)-regular Boolean objectives. In: Proceedings Ninth International Symposium on Games, Automata, Logics, and Formal Verification, GandALF 2018, 26–28th September 2018, Saarbrücken, Germany, pp. 16–29 (2018)

    Google Scholar 

  5. Brihaye, T., Bruyère, V., Goeminne, A., Raskin, J., van den Bogaard, M.: The complexity of subgame perfect equilibria in quantitative reachability games. CoRR abs/1905.00784 (2019). http://arxiv.org/abs/1905.00784

  6. Brihaye, T., Bruyère, V., Goeminne, A., Raskin, J., van den Bogaard, M.: The complexity of subgame perfect equilibria in quantitative reachability games. CONCUR 2019 (2019)

    Google Scholar 

  7. Brihaye, T., De Pril, J., Schewe, S.: Multiplayer cost games with simple Nash equilibria. In: Artemov, S., Nerode, A. (eds.) LFCS 2013. LNCS, vol. 7734, pp. 59–73. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-35722-0_5

    Chapter  Google Scholar 

  8. Brihaye, T., Geeraerts, G., Haddad, A., Monmege, B.: Pseudopolynomial iterative algorithm to solve total-payoff games and min-cost reachability games. Acta Inf. 54(1), 85–125 (2017)

    Article  MathSciNet  Google Scholar 

  9. Bruyère, V.: Computer aided synthesis: a game-theoretic approach. In: Charlier, É., Leroy, J., Rigo, M. (eds.) DLT 2017. LNCS, vol. 10396, pp. 3–35. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-62809-7_1

    Chapter  Google Scholar 

  10. Condurache, R., Filiot, E., Gentilini, R., Raskin, J.F.: The complexity of rational synthesis. In: Chatzigiannakis, I., Mitzenmacher, M., Rabani, Y., Sangiorgi, D. (eds.) 43rd International Colloquium on Automata, Languages, and Programming (ICALP 2016). Leibniz International Proceedings in Informatics (LIPIcs), vol. 55, pp. 121:1–121:15. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, Dagstuhl (2016)

    Google Scholar 

  11. Conitzer, V., Sandholm, T.: Complexity results about Nash equilibria. CoRR cs.GT/0205074 (2002). http://arxiv.org/abs/cs.GT/0205074

  12. Haddad, A.: Characterising Nash equilibria outcomes in fully informed concurrent games. http://web1.ulb.ac.be/di/verif/haddad/H16.pdf

  13. Khachiyan, L., et al.: On short paths interdiction problems: total and node-wise limited interdiction. Theory Comput. Syst. 43(2), 204–233 (2008)

    Article  MathSciNet  Google Scholar 

  14. Nash, J.F.: Equilibrium points in \(n\)-person games. In: PNAS, vol. 36, pp. 48–49. National Academy of Sciences (1950)

    Google Scholar 

  15. Osborne, M.: An Introduction to Game Theory. Oxford University Press, Oxford (2004)

    Google Scholar 

  16. Pnueli, A., Rosner, R.: On the synthesis of a reactive module. In: POPL, pp. 179–190. ACM Press (1989)

    Google Scholar 

  17. Ummels, M.: Rational behaviour and strategy construction in infinite multiplayer games. In: Arun-Kumar, S., Garg, N. (eds.) FSTTCS 2006. LNCS, vol. 4337, pp. 212–223. Springer, Heidelberg (2006). https://doi.org/10.1007/11944836_21

    Chapter  MATH  Google Scholar 

  18. Ummels, M.: The complexity of Nash equilibria in infinite multiplayer games. In: Amadio, R. (ed.) FoSSaCS 2008. LNCS, vol. 4962, pp. 20–34. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-78499-9_3

    Chapter  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aline Goeminne .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Brihaye, T., Bruyère, V., Goeminne, A., Thomasset, N. (2019). On Relevant Equilibria in Reachability Games. In: Filiot, E., Jungers, R., Potapov, I. (eds) Reachability Problems. RP 2019. Lecture Notes in Computer Science(), vol 11674. Springer, Cham. https://doi.org/10.1007/978-3-030-30806-3_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-30806-3_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-30805-6

  • Online ISBN: 978-3-030-30806-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics