Skip to main content

Coverability Is Undecidable in One-Dimensional Pushdown Vector Addition Systems with Resets

  • Conference paper
  • First Online:
Reachability Problems (RP 2019)

Abstract

We consider the model of pushdown vector addition systems with resets. These consist of vector addition systems that have access to a pushdown stack and have instructions to reset counters. For this model, we study the coverability problem. In the absence of resets, this problem is known to be decidable for one-dimensional pushdown vector addition systems, but decidability is open for general pushdown vector addition systems. Moreover, coverability is known to be decidable for reset vector addition systems without a pushdown stack. We show in this note that the problem is undecidable for one-dimensional pushdown vector addition systems with resets.

Work partially funded by ANR-17-CE40-0028 BraVAS.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Arnold, A., Latteux, M.: Récursivité et cônes rationnels fermés par intersection. CALCOLO 15(4), 381–394 (1978). https://doi.org/10.1007/BF02576519

    Article  MathSciNet  MATH  Google Scholar 

  2. Atig, M.F., Ganty, P.: Approximating Petri net reachability along context-free traces. In: FSTTCS 2011. Leibniz International Proceedings in Informatics, vol. 13, pp. 152–163 (2011). https://doi.org/10.4230/LIPIcs.FSTTCS.2011.152

  3. Blondin, M., Finkel, A., Göller, S., Haase, C., McKenzie, P.: Reachability in two-dimensional vector addition systems with states is PSPACE-complete. In: LICS 2015, pp. 32–43. IEEE (2015). https://doi.org/10.1109/LICS.2015.14

  4. Dufourd, C., Finkel, A., Schnoebelen, P.: Reset nets between decidability and undecidability. In: Larsen, K.G., Skyum, S., Winskel, G. (eds.) ICALP 1998. LNCS, vol. 1443, pp. 103–115. Springer, Heidelberg (1998). https://doi.org/10.1007/BFb0055044

    Chapter  MATH  Google Scholar 

  5. Englert, M., Lazić, R., Totzke, P.: Reachability in two-dimensional unary vector addition systems with states is NL-complete. In: LICS 2016, pp. 477–484. ACM (2016). https://doi.org/10.1145/2933575.2933577

  6. Finkel, A., Sutre, G.: Decidability of reachability problems for classes of two counters automata. In: Reichel, H., Tison, S. (eds.) STACS 2000. LNCS, vol. 1770, pp. 346–357. Springer, Heidelberg (2000). https://doi.org/10.1007/3-540-46541-3_29

    Chapter  Google Scholar 

  7. Hopcroft, J.E., Pansiot, J.J.: On the reachability problem for 5-dimensional vector addition systems. Theor. Comput. Sci. 8, 135–159 (1979). https://doi.org/10.1016/0304-3975(79)90041-0

    Article  MathSciNet  MATH  Google Scholar 

  8. Karp, R.M., Miller, R.E.: Parallel program schemata. J. Comput. Syst. Sci. 3(2), 147–195 (1969). https://doi.org/10.1016/S0022-0000(69)80011-5

    Article  MathSciNet  MATH  Google Scholar 

  9. Lazić, R.: The reachability problem for vector addition systems with a stack is not elementary. arXiv:1310.1767 [cs.LO] (2013). Presented orally at RP 2012

  10. Leroux, J., Praveen, M., Schnoebelen, Ph., Sutre, G.: On functions weakly computable by pushdown Petri nets and related systems (2019). arXiv:1904.04090 [cs.FL]. extended abstract published in: RP 2014. Lect. Notes in Comput. Sci., vol. 8762, pp. 190–202. Springer (2014)

  11. Leroux, J., Praveen, M., Sutre, G.: Hyper-Ackermannian bounds for pushdown vector addition systems. In: CSL-LICS 2014. IEEE (2014). https://doi.org/10.1145/2603088.2603146

  12. Leroux, J., Sutre, G., Totzke, P.: On the coverability problem for pushdown vector addition systems in one dimension. In: Halldórsson, M.M., Iwama, K., Kobayashi, N., Speckmann, B. (eds.) ICALP 2015. LNCS, vol. 9135, pp. 324–336. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-47666-6_26

    Chapter  Google Scholar 

  13. Mayr, E.W., Meyer, A.R.: The complexity of the finite containment problem for Petri nets. J. ACM 28(3), 561–576 (1981). https://doi.org/10.1145/322261.322271

    Article  MathSciNet  MATH  Google Scholar 

  14. Minsky, M.L.: Recursive unsolvability of Post’s problem of “tag” and other topics in theory of Turing machines. Ann. Math. 74(3), 437–455 (1961). https://doi.org/10.2307/1970290

    Article  MathSciNet  MATH  Google Scholar 

  15. Reinhardt, K.: Reachability in Petri nets with inhibitor arcs. In: RP 2008. Electronic Notes in Theoretical Computer Science, vol. 223, pp. 239–264 (2008). https://doi.org/10.1016/j.entcs.2008.12.042. Based on a manuscript already available from the author’s webpage in 1995

    Article  Google Scholar 

  16. Zetzsche, G.: The emptiness problem for valence automata over graph monoids. Inform. Comput. (2018) arXiv:1710.07528 [cs.FL]. To appear; extended abstract published in: RP 2015. Lect. Notes in Comput. Sci., vol. 9328, pp. 166–178. Springer (2015)

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Sylvain Schmitz or Georg Zetzsche .

Editor information

Editors and Affiliations

A Proof of Proposition 2

A Proof of Proposition 2

It remains to prove Proposition 2. We will use the following lemma.

Lemma 1

Let \(R_1,\ldots ,R_\ell \subseteq \mathbb {N}\times \mathbb {N}\) be strictly monotone relations and \((m,n)\in \overrightarrow{R_1}\cdots \overrightarrow{R_\ell }\) and \((m',n')\in \overleftarrow{R_1}\cdots \overleftarrow{R_\ell }\). If \(n'\le n\), then \(m'\le m\). Moreover, if \(n'<n\), then \(m'<m\).

Proof

It suffices to prove the lemma in the case \(\ell =1\): then, the general version follows by induction. Let \((m,n)\in \overrightarrow{R_1}\) and \((m',n')\in \overleftarrow{R_1}\). Then there are \(\tilde{n}\ge n\) with \((m,\tilde{n})\in R_1\) and \(\tilde{m}\ge m'\) with \((\tilde{m},n')\in R_1\). If \(n'<n\), then we have the following relationships:

Since \(R_1\) is strictly monotone, this implies \(\tilde{m}<m\) and thus \(m'<m\). The case \(n'\le n\) follows by the same argument.    \(\square \)

We are now ready to prove Proposition 2.

Proposition 2

If \(R_1,\ldots ,R_\ell \subseteq \mathbb {N}\times \mathbb {N}\) are strictly monotone relations, then \(R_1R_2\cdots R_\ell =\overrightarrow{R_1}\overrightarrow{R_2}\cdots \overrightarrow{R_\ell }\cap \overleftarrow{R_1}\overleftarrow{R_2}\cdots \overleftarrow{R_\ell }\).

Proof

Of course, for any relation \(R\subseteq \mathbb {N}\times \mathbb {N}\), one has \(R\subseteq \overrightarrow{R}\) and \(R\subseteq \overleftarrow{R}\). In particular, \(R_1R_2\cdots R_\ell \) is included in both \(\overrightarrow{R_1}\overrightarrow{R_2}\cdots \overrightarrow{R_\ell }\) and \(\overleftarrow{R_1}\overleftarrow{R_2}\cdots \overleftarrow{R_\ell }\).

For the converse inclusion, suppose \((m,n)\in \overrightarrow{R_1}\overrightarrow{R_2}\cdots \overrightarrow{R_\ell }\cap \overleftarrow{R_1}\overleftarrow{R_2}\cdots \overleftarrow{R_\ell }\). Then there are \(p_0,\ldots ,p_{\ell }\in \mathbb {N}\) with \(p_0=m\), \(p_\ell =n\), and \((p_{i-1},p_{i})\in \overrightarrow{R_i}\) for \(0< i\le \ell \). There are also \(q_0,\ldots ,q_{\ell }\in \mathbb {N}\) with \(q_0=m\), \(q_\ell =n\), and \((q_{i-1},q_{i})\in \overleftarrow{R_i}\) for \(0<i\le \ell \).

Towards a contradiction, suppose that \((p_{i-1},p_i)\notin R_i\) for some \(0<i\le \ell \). Then there is a \(\tilde{p}_i>p_i\) with \((p_{i-1},\tilde{p}_i)\in R_i\). With this, we have

Since \(p_\ell =q_\ell \), Lemma 1 applied to \(R_{i+1},\dots ,R_\ell \) implies \(q_i\le p_i\) and thus \(q_i<\tilde{p}_i\). Applying Lemma 1 to \(R_1,\dots ,R_i\) then yields \(q_0<p_0\), a contradiction. Therefore, we have \((p_{i-1},p_i)\in R_i\) for every \(0<i\le \ell \) and thus \((m,n)\in R_1\cdots R_\ell \).   \(\square \)

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Schmitz, S., Zetzsche, G. (2019). Coverability Is Undecidable in One-Dimensional Pushdown Vector Addition Systems with Resets. In: Filiot, E., Jungers, R., Potapov, I. (eds) Reachability Problems. RP 2019. Lecture Notes in Computer Science(), vol 11674. Springer, Cham. https://doi.org/10.1007/978-3-030-30806-3_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-30806-3_15

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-30805-6

  • Online ISBN: 978-3-030-30806-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics