Advertisement

State-of-the-Art

  • João M. P. Q. DelgadoEmail author
  • António C. Azevedo
  • Ana S. Guimarães
Chapter
Part of the SpringerBriefs in Applied Sciences and Technology book series (BRIEFSAPPLSCIENCES)

Abstract

Transport phenomena in porous media occurs in diverse fields of science and engineering, ranging from agricultural, biomedical, building, ceramic, chemical, and petroleum engineering to food and soil sciences. Morrow provides an extensive description of the problems involving porous media. For building engineering, obtaining a good understanding of moisture transport in building envelopes is becoming one of the most important tasks. In the last few decades, many studies investigating moisture transport in building envelopes have been published, which have helped to improve overall building envelope design. This chapter presents a brief review of these studies.

References

  1. 1.
    N.R. Morrow, S. Ma, X. Zhou, X. Zhang, Characterization of wettability from spontaneous imbibition measurements, in Proceedings of the 45th Annual Technical Meeting of the Petroleum Society of the CIM, Calgary, Alberta, Canada, 12–15 June 1994Google Scholar
  2. 2.
    M.K. Kumaran, Moisture diffusivity of spruce specimen, lEA, Annex 24, HAMTIE (International Energy Agency, New York, 1992)Google Scholar
  3. 3.
    R.A. Greenkorn, Flow phenomena in porous media (Marcel Dekker, New York and Basel, 1983)Google Scholar
  4. 4.
    J. Bear, Y. Bachmat, Introduction to Modeling of Transport Phenomena in Porous Media (Springer, Berlin, 1990), 305 pagesCrossRefGoogle Scholar
  5. 5.
    D.M. Burch, Controlling moisture in the roof cavities of manufactured housing. NISTIR 4916, USA (1992)Google Scholar
  6. 6.
    H.M. Künzel, Th. Großkinsky, Feuchtebelastungen beeinträchtigen die Wirkung von Dampfbremspappen. Fraunhofer-Institut für Bauphysik (1997)Google Scholar
  7. 7.
    K.H. Bomberg, Rezeptive Musiktherapie im Rahmen integrativer Psychotherapie. Ph.D. thesis, Verlag nicht ermittelbar, Germany (1989)Google Scholar
  8. 8.
    H. Hens, IEA Annex 24: Heat, air and moisture transfer through new and retrofitted insulated envelope parts (HAMTIE). Final Report, Molenda (1996)Google Scholar
  9. 9.
    A.W. Adamson, Physical Chemistry of Surfaces, 5th edn. (Wiley, New York, 1990)Google Scholar
  10. 10.
    A. Poulovassilis, Hysteresis of pore water, an application of the concept of independent domains. Soil Sci. 93(6), 405–412 (1962)CrossRefGoogle Scholar
  11. 11.
    H. Künzel, Simultaneous Heat and Moisture Transport in Building Components—One and Two-Dimensional Calculation using Simple Parameters (IBP Verlag, Stuttgart, Germany, 1995)Google Scholar
  12. 12.
    C. Rode, Combined heat and moisture transfer in building constructions. Thermal Insulation Laboratory, Technical University of Denmark (1990)Google Scholar
  13. 13.
    P.C. Carman, Flow of Gases Through Porous Media (Academic Press, New York, USA, 1956)Google Scholar
  14. 14.
    L. Pel, Moisture transport in porous building materials. Ph.D. thesis, Technical University Eindhoven, The Netherlands (1995)Google Scholar
  15. 15.
    B.M. Parker, Some effects of moisture on adhesive-bonded CFRP-CFRP joints. Compos. Struct. 6(1–3), 123–139 (1986)CrossRefGoogle Scholar
  16. 16.
    M.K. Kumaran, G.P. Mitalas, M. Bomberg, Fundamentals of transport and storage of moisture in building materials and components. Moisture Control Build. 18, 3–17 (1994)Google Scholar
  17. 17.
    J. Straube, E. Burnett, Overview of hygrothermal (HAM) analysis methods. ASTM Manual 40, 81–89 (2001)Google Scholar
  18. 18.
    F.A.L. Dullien, Porous Media: Fluid Transport and Pore Structure (Academic Press, New York, USA, 1992)Google Scholar
  19. 19.
    M. Sahimi, Fractal and superdiffusive transport and hydrodynamic dispersion in heterogeneous porous media. Transp. Porous Media 13(1), 3–40 (1993)CrossRefGoogle Scholar
  20. 20.
    M. Sahimi, Nonlinear transport processes in disordered media. AIChE J. 39(3), 369–386 (1993)CrossRefGoogle Scholar
  21. 21.
    F. Descamps. Continuum and discrete modelling of isothermal water and air transfer in porous media. Ph.D. Thesis, Catholic University of Leuven, Leuven, Belgium (1997)Google Scholar
  22. 22.
    I. Fatt, The Network Model of Porous Media (Society of Petroleum Engineers, USA, 1956)Google Scholar
  23. 23.
    J.R. Philip, D.A. de Vries, Moisture movement in porous materials under temperature gradients. Eos Trans. Am. Geophys. Union 38(2), 222–232 (1957)CrossRefGoogle Scholar
  24. 24.
    A.V. Luikov, Heat and mass transfer in capillary-porous bodies. Adv. Heat Transf. 1, 123–184 (1964)CrossRefGoogle Scholar
  25. 25.
    D.A. de Vries, J.R. Philip, Soil heat flux, thermal conductivity, and the null-alignment method 1. Soil Sci. Soc. Am. J. 50(1), 12–18 (1986)CrossRefGoogle Scholar
  26. 26.
    K. Kießl, Kapillarer und dampfförmiger Feuchtetransport in mehrschichtigen Bauteilen: Rechnerische Erfassung und bauphysikalische Anwendung. Ph.D. thesis, Universität-Gesamthochschule Essen, Germany (1983)Google Scholar
  27. 27.
    M. Salonvaara, Moisture Potentials: Numerical Analysis of Two Differential Equations (Internal Reports, USA, 1993)Google Scholar
  28. 28.
    K. Matsumoto et al., Solidification of porous medium saturated with aqueous solution in a rectangular cell. Int. J. Heat Mass Transf. 36(11), 2869–2880 (1993)CrossRefGoogle Scholar
  29. 29.
    D.A. Burch, J. Chi, MOIST: a PC program for predicting heat and moisture transfer in building envelopes: Release 3.0. US Department of Commerce, National Institute of Standards and Technology, USA (1997)Google Scholar
  30. 30.
    J.M.P.Q. Delgado, N. Ramos, E. Barreira, V.P. Freitas, A critical review of hygrothermal models used in porous building materials. J. Porous Media 13(3), 221–234 (2010)CrossRefGoogle Scholar
  31. 31.
    A. Nicolai, J. Zhang, J. Grunewald, Coupling strategies for combined simulation using multizone and building envelope models, in Proceedings of Building Simulation (BS), Beijing, China, 3–6 Sept 2007Google Scholar
  32. 32.
    H.M. Künzel, K. Kießl, Moisture behaviour of protected membrane roofs with greenery, in CIB W40 Meeting, Prague, 30 Aug–3 Sept 1999Google Scholar
  33. 33.
    N.M.M. Ramos, J.M.P.Q. Delgado, E. Barreira, V.P. de Freitas, Hygrothermal numerical simulation: application in moisture damage prevention, in Numerical Simulations—Examples and Applications in Computational Fluid Dynamics, vol. 1, Chap. 6, ed. L. Angermann (INTECH Publishers, 2010), pp. 97–122Google Scholar
  34. 34.
    J.M.P.Q. Delgado, E. Barreira, N.M.M. Ramos, V.P. de Freitas, Hygrothermal Numerical Simulation Tools Applied to Building Physics (Springer, Germany, 2012)Google Scholar
  35. 35.
    A.S. Freitas, Avaliação do comportamento higrotérmico de revestimentos exteriores de fachadas devido à acção da chuva incidente. M.Sc. thesis, Faculdade de Engenharia da Universidade do Porto, Portugal (2011)Google Scholar
  36. 36.
    K. Nore, B. Blocken, B.P. Jelle, J.V. Thue, J. Carmeliet, A dataset of wind-driven rain measurements on a low-rise test building in Norway. Build. Environ. 42, 2150–2165 (2007)CrossRefGoogle Scholar
  37. 37.
    M. Abuku et al., Numerical Simulation of absorption and evaporation of Wind driven rain at buildings facades, in 12th Symposium for Building Physics, vol. 1 (Technishe Universitat Dresden, Dresden, 2007), pp. 588–595Google Scholar
  38. 38.
    H. Derluyn, H. Janssen, J. Carmeliet, Influence of the nature of interfaces on the capillary transport in layered materials. Constr. Build. Mater. 25(9), 3685–3693 (2011)CrossRefGoogle Scholar
  39. 39.
    R.J. Gummerson, C. Hall, W.D. Hoff, R. Hawkes, G.N. Holland, W.S. Moore, Unsaturated water flow within porous materials observed by NMR imaging. Nature 281, 56–57 (1979)CrossRefGoogle Scholar
  40. 40.
    X. Qiu, Moisture transport across interfaces between building materials. Ph.D. thesis, Concordia University, Montreal, Canada (2003)Google Scholar
  41. 41.
    H. Janssen, H. Derluyn, J. Carmeliet, Moisture transfer through mortar joints: a sharp-front analysis. Cem. Concr. Res. 42, 1105–1112 (2012)CrossRefGoogle Scholar
  42. 42.
    J.M.P.Q. Delgado, A.S. Guimarães, V.P. de Freitas, I. Antepara, V. Kočí, R. Černý. Salt damage and rising damp treatment in building structures. Adv. Mater. Sci. Eng. 2016, Article number ID 1280894, 13 pages (2016)Google Scholar
  43. 43.
    A.S. Guimarães, J.M.P.Q. Delgado, V.P. Freitas, Rising damp in walls: evaluation of the level achieved by the damp front. J. Build. Phys. 37, 6–27 (2013)CrossRefGoogle Scholar
  44. 44.
    A.S. Guimarães, J.M.P.Q. Delgado, V.P. Freitas, Rising damp in building walls: the wall base ventilation system. Heat Mass Transf. 48, 2079–2085 (2012)CrossRefGoogle Scholar
  45. 45.
    V.P. Freitas, A.S. Guimarães, J.M.P.Q. Delgado, The HUMIVENT device for rising damp treatment. Recent Pat. Eng. 5, 233–240 (2011)CrossRefGoogle Scholar
  46. 46.
    V.P. de Freitas, Moisture transfer in building walls—interface phenomenon analysis. Ph.D. thesis, Faculdade de Engenharia da Universidade do Porto, Porto, Portugal (1992)Google Scholar
  47. 47.
    V.P. de Freitas, V. Abrantes, P. Crausse, Moisture migration in building walls: analysis of the interface phenomena. Build. Environ. 31, 99–108 (1996)CrossRefGoogle Scholar

Copyright information

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2020

Authors and Affiliations

  • João M. P. Q. Delgado
    • 1
    Email author
  • António C. Azevedo
    • 2
  • Ana S. Guimarães
    • 2
  1. 1.Department of Civil Engineering, Faculty of EngineeringUniversity of PortoPortoPortugal
  2. 2.CONSTRUCT-LFCUniversity of PortoPortoPortugal

Personalised recommendations