Skip to main content

Learning to Rank Query Graphs for Complex Question Answering over Knowledge Graphs

  • Conference paper
  • First Online:
The Semantic Web – ISWC 2019 (ISWC 2019)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 11778))

Included in the following conference series:

Abstract

In this paper, we conduct an empirical investigation of neural query graph ranking approaches for the task of complex question answering over knowledge graphs. We propose a novel self-attention based slot matching model which exploits the inherent structure of query graphs, our logical form of choice. Our proposed model generally outperforms other ranking models on two QA datasets over the DBpedia knowledge graph, evaluated in different settings. We also show that domain adaption and pre-trained language model based transfer learning yield improvements, effectively offsetting the general lack of training data.

G. Maheshwari, P. Trivedi, D. Lukovnikov and N. Chakraborty—These four authors contributed equally.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Entity that has been linked in the question.

  2. 2.

    That is, we use the first 70% of dataset, as made available on https://figshare.com/projects/LC-QuAD/21812 by [20], to train our models. Next 10% is used to decide the best hyperparamters. The metrics we report in the rest of this section are based on the model’s performance on the last 20% of it.

  3. 3.

    as provided by the authors at https://github.com/google-research/bert.

References

  1. Bast, H., Haussmann, E.: More accurate question answering on freebase. In: Proceedings of the 24th ACM International on Conference on Information and Knowledge Management, pp. 1431–1440. ACM (2015)

    Google Scholar 

  2. Berant, J., Liang, P.: Semantic parsing via paraphrasing. In: Proceedings of the 52nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 1415–1425. Association for Computational Linguistics (2014). https://doi.org/10.3115/v1/P14-1133

  3. Bowman, S.R., Angeli, G., Potts, C., Manning, C.D.: A large annotated corpus for learning natural language inference. In: Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing (EMNLP). Association for Computational Linguistics (2015)

    Google Scholar 

  4. Cohen, W.W.: TensorLog: a differentiable deductive database. arXiv preprint arXiv:1605.06523 (2016)

  5. Cui, W., Xiao, Y., Wang, H., Song, Y., Hwang, S.w., Wang, W.: KBQA: learning question answering over QA corpora and knowledge bases. Proc. VLDB Endow. 10(5), 565–576 (2017). https://doi.org/10.14778/3055540.3055549

    Article  Google Scholar 

  6. Devlin, J., Chang, M.W., Lee, K., Toutanova, K.: Bert: pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018)

  7. Dubey, M., Dasgupta, S., Sharma, A., Höffner, K., Lehmann, J.: AskNow: a framework for natural language query formalization in SPARQL. In: Sack, H., Blomqvist, E., d’Aquin, M., Ghidini, C., Ponzetto, S.P., Lange, C. (eds.) ESWC 2016. LNCS, vol. 9678, pp. 300–316. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-34129-3_19

    Chapter  Google Scholar 

  8. Fader, A., Zettlemoyer, L., Etzioni, O.: Open question answering over curated and extracted knowledge bases. In: Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 1156–1165. ACM (2014)

    Google Scholar 

  9. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8), 1735–1780 (1997)

    Article  Google Scholar 

  10. Howard, J., Ruder, S.: Universal language model fine-tuning for text classification. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), vol. 1, pp. 328–339 (2018)

    Google Scholar 

  11. Kim, Y.: Convolutional neural networks for sentence classification. arXiv preprint arXiv:1408.5882 (2014)

  12. Lehmann, J., et al.: Dbpedia-a large-scale, multilingual knowledge base extracted from Wikipedia. Seman. Web 6(2), 167–195 (2015)

    Google Scholar 

  13. Loshchilov, I., Hutter, F.: SGDR: stochastic gradient descent with warm restarts. arXiv preprint arXiv:1608.03983 (2016)

  14. Lukovnikov, D., Fischer, A., Lehmann, J.: Pretrained transformers for simple question answering over knowledge graphs. In: International Semantic Web Conference. Springer, Heidelberg (2019)

    Google Scholar 

  15. Mohammed, S., Shi, P., Lin, J.: Strong baselines for simple question answering over knowledge graphs with and without neural networks. arXiv preprint arXiv:1712.01969 (2017)

  16. Parikh, A., Täckström, O., Das, D., Uszkoreit, J.: A decomposable attention model for natural language inference. In: Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pp. 2249–2255. Association for Computational Linguistics (2016). https://doi.org/10.18653/v1/D16-1244, http://www.aclweb.org/anthology/D16-1244

  17. Pennington, J., Socher, R., Manning, C.D.: GloVe: global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp. 1532–1543 (2014). http://www.aclweb.org/anthology/D14-1162

  18. Radford, A., Narasimhan, K., Salimans, T., Sutskever, I.: Improving language understanding by generative pre-training (2018). https://s3-us-west-2.amazonaws.com/openai-assets/research-covers/language-unsupervised/language_ understanding_paper.pdf

  19. Reddy, S., Täckström, O., Petrov, S., Steedman, M., Lapata, M.: Universal semantic parsing. In: Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing, pp. 89–101. Association for Computational Linguistics (2017). http://aclweb.org/anthology/D17-1009

  20. Trivedi, P., Maheshwari, G., Dubey, M., Lehmann, J.: LC-QuAD: a corpus for complex question answering over knowledge graphs. In: d’Amato, C., et al. (eds.) ISWC 2017. LNCS, vol. 10588, pp. 210–218. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-68204-4_22

    Chapter  Google Scholar 

  21. Usbeck, R., Ngomo, A.-C.N., Haarmann, B., Krithara, A., Röder, M., Napolitano, G.: 7th open challenge on question answering over linked data (QALD-7). In: Dragoni, M., Solanki, M., Blomqvist, E. (eds.) SemWebEval 2017. CCIS, vol. 769, pp. 59–69. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-69146-6_6

    Chapter  Google Scholar 

  22. Xu, K., Zhang, S., Feng, Y., Zhao, D.: Answering natural language questions via phrasal semantic parsing. In: Zong, C., Nie, J.Y., Zhao, D., Feng, Y. (eds.) Natural Language Processing and Chinese Computing. Communications in Computer and Information Science, vol. 496, pp. 333–344. Springer, Berlin (2014). https://doi.org/10.1007/978-3-662-45924-9_30

    Chapter  Google Scholar 

  23. Yih, W.T., Chang, M.W., He, X., Gao, J.: Semantic parsing via staged query graph generation: question answering with knowledge base. In: Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics and the 7th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), vol. 1, pp. 1321–1331 (2015)

    Google Scholar 

  24. Yu, M., Yin, W., Hasan, K.S., dos Santos, C., Xiang, B., Zhou, B.: Improved neural relation detection for knowledge base question answering. In: Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 571–581. Association for Computational Linguistics (2017). https://doi.org/10.18653/v1/P17-1053, http://www.aclweb.org/anthology/P17-1053

Download references

Acknowledgements

This work has been supported by the Fraunhofer-Cluster of Excellence “Cognitive Internet Technologies” (CCIT).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gaurav Maheshwari .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Maheshwari, G., Trivedi, P., Lukovnikov, D., Chakraborty, N., Fischer, A., Lehmann, J. (2019). Learning to Rank Query Graphs for Complex Question Answering over Knowledge Graphs. In: Ghidini, C., et al. The Semantic Web – ISWC 2019. ISWC 2019. Lecture Notes in Computer Science(), vol 11778. Springer, Cham. https://doi.org/10.1007/978-3-030-30793-6_28

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-30793-6_28

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-30792-9

  • Online ISBN: 978-3-030-30793-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics