Skip to main content

Difficulty-Controllable Multi-hop Question Generation from Knowledge Graphs

  • Conference paper
  • First Online:
The Semantic Web – ISWC 2019 (ISWC 2019)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 11778))

Included in the following conference series:

Abstract

Knowledge graphs have become ubiquitous data sources and their utility has been amplified by the research on ability to answer carefully crafted questions over knowledge graphs. We investigate the problem of question generation (QG) over knowledge graphs wherein, the level of difficulty of the question can be controlled. We present an end-to-end neural network-based method for automatic generation of complex multi-hop questions over knowledge graphs. Taking a subgraph and an answer as input, our transformer-based model generates a natural language question. Our model incorporates difficulty estimation based on named entity popularity, and makes use of this estimation to generate difficulty-controllable questions. We evaluate our model on two recent multi-hop QA datasets. Our evaluation shows that our model is able to generate high-quality, fluent and relevant questions. We have released our curated QG dataset and code at https://github.com/liyuanfang/mhqg.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://github.com/liyuanfang/mhqg.

  2. 2.

    Retrieved from https://www.microsoft.com/en-us/download/details.aspx?id=52763, https://www.tau-nlp.org/compwebq, and https://github.com/zmtkeke/IRN/tree/master/PathQuestion respectively.

  3. 3.

    Available at https://github.com/liyuanfang/mhqg.

  4. 4.

    https://tagme.d4science.org/tagme/.

References

  1. Berant, J., Chou, A., Frostig, R., Liang, P.: Semantic parsing on freebase from question-answer pairs. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing, pp. 1533–1544. Association for Computational Linguistics (2013)

    Google Scholar 

  2. Bizer, C., et al.: DBpedia-a crystallization point for the web of data. Web Semant.: Sci. Serv. Agents World Wide Web 7(3), 154–165 (2009)

    Article  Google Scholar 

  3. Bollacker, K., Evans, C., Paritosh, P., Sturge, T., Taylor, J.: Freebase: a collaboratively created graph database for structuring human knowledge. In: Proceedings of the 2008 ACM SIGMOD International Conference on Management of Data, pp. 1247–1250. ACM (2008)

    Google Scholar 

  4. Bordes, A., Usunier, N., Chopra, S., Weston, J.: Large-scale simple question answering with memory networks. arXiv preprint arXiv:1506.02075 (2015)

  5. Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J., Yakhnenko, O.: Translating embeddings for modeling multi-relational data. In: Advances in Neural Information Processing Systems, pp. 2787–2795 (2013)

    Google Scholar 

  6. Cho, K., et al.: Learning phrase representations using RNN encoder-decoder for statistical machine translation. In: Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 1724–1734. Association for Computational Linguistics, Doha, Qatar, October 2014

    Google Scholar 

  7. Chorowski, J., Jaitly, N.: Towards better decoding and language model integration in sequence to sequence models. In: Proceedings of the Interspeech 2017, pp. 523–527 (2017)

    Google Scholar 

  8. Diefenbach, D., Lopez, V., Singh, K., Maret, P.: Core techniques of question answering systems over knowledge bases: a survey. Knowl. Inf. Syst. 55(3), 529–569 (2018)

    Article  Google Scholar 

  9. Du, X., Shao, J., Cardie, C.: Learning to ask: neural question generation for reading comprehension. In: ACL, vol. 1, pp. 1342–1352 (2017)

    Google Scholar 

  10. Elsahar, H., Gravier, C., Laforest, F.: Zero-shot question generation from knowledge graphs for unseen predicates and entity types. In: Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, (Long Papers), vol. 1, pp. 218–228. Association for Computational Linguistics, New Orleans, Louisiana, June 2018

    Google Scholar 

  11. Erxleben, F., Günther, M., Krötzsch, M., Mendez, J., Vrandečić, D.: Introducing wikidata to the linked data web. In: Mika, P., et al. (eds.) ISWC 2014. LNCS, vol. 8796, pp. 50–65. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-11964-9_4

    Chapter  Google Scholar 

  12. Fan, Z., Wei, Z., Li, P., Lan, Y., Huang, X.: A question type driven framework to diversify visual question generation. In: IJCAI, pp. 4048–4054 (2018)

    Google Scholar 

  13. Gardent, C., Shimorina, A., Narayan, S., Perez-Beltrachini, L.: Creating training corpora for NLG micro-planners. In: Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics, (vol. 1: Long Papers), pp. 179–188. Association for Computational Linguistics, Vancouver, Canada, July 2017

    Google Scholar 

  14. Han, X., et al.: OpenKE: an open toolkit for knowledge embedding. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp. 139–144. Association for Computational Linguistics, Brussels, Belgium, November 2018

    Google Scholar 

  15. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8), 1735–1780 (1997)

    Article  Google Scholar 

  16. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014)

  17. Kumar, V., Boorla, K., Meena, Y., Ramakrishnan, G., Li, Y.-F.: Automating reading comprehension by generating question and answer pairs. In: Phung, D., Tseng, V.S., Webb, G.I., Ho, B., Ganji, M., Rashidi, L. (eds.) PAKDD 2018. LNCS, vol. 10939, pp. 335–348. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-93040-4_27

    Chapter  Google Scholar 

  18. Li, Y., et al.: Visual question generation as dual task of visual question answering. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6116–6124 (2018)

    Google Scholar 

  19. Lopez, V., Unger, C., Cimiano, P., Motta, E.: Evaluating question answering over linked data. Web Semant. Sci. Serv. Agents World Wide Web 21, 3–13 (2013)

    Article  Google Scholar 

  20. Marcheggiani, D., Perez-Beltrachini, L.: Deep graph convolutional encoders for structured data to text generation. In: Proceedings of the 11th International Conference on Natural Language Generation, pp. 1–9. Association for Computational Linguistics, Tilburg University, The Netherlands, November 2018

    Google Scholar 

  21. Pennington, J., Socher, R., Manning, C.: GloVe: global vectors for word representation. In: Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 1532–1543. Association for Computational Linguistics, Doha, Qatar, October 2014

    Google Scholar 

  22. Reddy, S., Raghu, D., Khapra, M.M., Joshi, S.: Generating natural language question-answer pairs from a knowledge graph using a RNN based question generation model. In: Proceedings of the 15th Conference of the European Chapter of the Association for Computational Linguistics, vol. 1, Long Papers, pp. 376–385. Association for Computational Linguistics (2017)

    Google Scholar 

  23. Saha, A., Pahuja, V., Khapra, M.M., Sankaranarayanan, K., Chandar, S.: Complex sequential question answering: towards learning to converse over linked question answer pairs with a knowledge graph. In: Thirty-Second AAAI Conference on Artificial Intelligence (2018)

    Google Scholar 

  24. Serban, I.V., et al.: Generating factoid questions with recurrent neural networks: the 30M factoid question-answer corpus. arXiv preprint arXiv:1603.06807 (2016)

  25. Seyler, D., Yahya, M., Berberich, K.: Generating quiz questions from knowledge graphs. In: Proceedings of the 24th International Conference on World Wide Web, WWW 2015 Companion, pp. 113–114. ACM, New York, NY, USA (2015)

    Google Scholar 

  26. Song, L., Wang, Z., Hamza, W., Zhang, Y., Gildea, D.: Leveraging context information for natural question generation. In: NAACL (Short Papers), vol. 2, 569–574 (2018)

    Google Scholar 

  27. Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., Wojna, Z.: Rethinking the inception architecture for computer vision. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2818–2826 (2016)

    Google Scholar 

  28. Talmor, A., Berant, J.: The web as a knowledge-base for answering complex questions. In: Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Vol. 1 (Long Papers), pp. 641–651. Association for Computational Linguistics (2018)

    Google Scholar 

  29. Trisedya, B.D., Qi, J., Zhang, R., Wang, W.: GTR-LSTM: a triple encoder for sentence generation from RDF data. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics, (vol. 1: Long Papers), pp. 1627–1637. Association for Computational Linguistics, Melbourne, Australia, July 2018

    Google Scholar 

  30. Trivedi, P., Maheshwari, G., Dubey, M., Lehmann, J.: LC-QuAD: a corpus for complex question answering over knowledge graphs. In: d’Amato, C., et al. (eds.) ISWC 2017. LNCS, vol. 10588, pp. 210–218. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-68204-4_22

    Chapter  Google Scholar 

  31. Vaswani, A., et al.: Attention is all you need. In: Advances in Neural Information Processing Systems (NIPS), pp. 5998–6008 (2017)

    Google Scholar 

  32. Vougiouklis, P., et al.: Neural Wikipedian: generating textual summaries from knowledge base triples. J. Web Semant. 52–53, 1–15 (2018)

    Article  Google Scholar 

  33. Weston, J., Chopra, S., Bordes, A.: Memory networks. In: Bengio, Y., LeCun, Y. (eds.) Conference Track Proceedings on 3rd International Conference on Learning Representations, ICLR 2015, San Diego, CA, USA, 7–9 May 2015 (2015)

    Google Scholar 

  34. Yih, W., Richardson, M., Meek, C., Chang, M.W., Suh, J.: The value of semantic parse labeling for knowledge base question answering. In: Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics, (vol. 2: Short Papers), pp. 201–206. Association for Computational Linguistics (2016)

    Google Scholar 

  35. Zhou, M., Huang, M., Zhu, X.: An interpretable reasoning network for multi-relation question answering. In: Proceedings of the 27th International Conference on Computational Linguistics, pp. 2010–2022. Association for Computational Linguistics (2018)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuan-Fang Li .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kumar, V., Hua, Y., Ramakrishnan, G., Qi, G., Gao, L., Li, YF. (2019). Difficulty-Controllable Multi-hop Question Generation from Knowledge Graphs. In: Ghidini, C., et al. The Semantic Web – ISWC 2019. ISWC 2019. Lecture Notes in Computer Science(), vol 11778. Springer, Cham. https://doi.org/10.1007/978-3-030-30793-6_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-30793-6_22

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-30792-9

  • Online ISBN: 978-3-030-30793-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics