Skip to main content

A Turing Kernelization Dichotomy for Structural Parameterizations of \(\mathcal {F}\)-Minor-Free Deletion

  • Conference paper
  • First Online:
Graph-Theoretic Concepts in Computer Science (WG 2019)

Abstract

For a fixed finite family of graphs \(\mathcal {F}\), the \(\mathcal {F}\)-Minor-Free Deletion problem takes as input a graph G and an integer \(\ell \) and asks whether there exists a set \(X \subseteq V(G)\) of size at most \(\ell \) such that \(G-X\) is \(\mathcal {F}\)-minor-free. For \(\mathcal {F} =\{K_2\}\) and \(\mathcal {F} =\{K_3\}\) this encodes Vertex Cover and Feedback Vertex Set respectively. When parameterized by the feedback vertex number of G these two problems are known to admit a polynomial kernelization. Such a polynomial kernelization also exists for any \(\mathcal {F}\) containing a planar graph but no forests.

In this paper we show that \(\mathcal {F}\)-Minor-Free Deletion parameterized by the feedback vertex number is \(\mathsf {MK[2]}\)-hard for \(\mathcal {F} = \{P_3\}\). This rules out the existence of a polynomial kernel assuming \(\mathsf {NP}\not \subseteq \mathsf {coNP/poly}\), and also gives evidence that the problem does not admit a polynomial Turing kernel. Our hardness result generalizes to any \(\mathcal {F}\) not containing a \(P_3\)-subgraph-free graph, using as parameter the vertex-deletion distance to treewidth \(\min {{\,\mathrm{tw}\,}} (\mathcal {F})\), where \(\min {{\,\mathrm{tw}\,}} (\mathcal {F})\) denotes the minimum treewidth of the graphs in \(\mathcal {F}\). For the other case, where \(\mathcal {F}\) contains a \(P_3\)-subgraph-free graph, we present a polynomial Turing kernelization. Our results extend to \(\mathcal {F}\)-Subgraph-Free Deletion.

B. M. P. Jansen: Supported by NWO Gravitation grant “Networks”.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 74.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    If \(\mathcal {F} \) contains no forests, the size of an optimal solution is at most the size of a feedback vertex set: the kernel for the solution-size parameterization can be used.

References

  1. Agrawal, A., Lokshtanov, D., Misra, P., Saurabh, S., Zehavi, M.: Feedback vertex set inspired kernel for chordal vertex deletion. In: Proceedings of 28th SODA, pp. 1383–1398. SIAM (2017). https://doi.org/10.1137/1.9781611974782.90

  2. Berge, C.: Sur le couplage maximum d’un graphe. Comptes rendus hebdomadaires des séances de l’Académie des sciences 247, 258–259 (1958)

    MathSciNet  MATH  Google Scholar 

  3. Bodlaender, H.L.: A partial \(k\)-arboretum of graphs with bounded treewidth. Theor. Comput. Sci. 209(1–2), 1–45 (1998). https://doi.org/10.1016/S0304-3975(97)00228-4

    Article  MathSciNet  MATH  Google Scholar 

  4. Bodlaender, H.L.: Kernelization: new upper and lower bound techniques. In: Chen, J., Fomin, F.V. (eds.) IWPEC 2009. LNCS, vol. 5917, pp. 17–37. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-11269-0_2

    Chapter  Google Scholar 

  5. Bodlaender, H.L., van Dijk, T.C.: A cubic kernel for feedback vertex set and loop cutset. Theory Comput. Syst. 46(3), 566–597 (2010)

    Article  MathSciNet  Google Scholar 

  6. Bougeret, M., Sau, I.: How much does a treedepth modulator help to obtain polynomial kernels beyond sparse graphs? In: Proceedings of 12th IPEC. LIPIcs, vol. 89, pp. 10:1–10:13 (2017). https://doi.org/10.4230/LIPIcs.IPEC.2017.10

  7. Cygan, M., Lokshtanov, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: On the hardness of losing width. Theory Comput. Syst. 54(1), 73–82 (2014). https://doi.org/10.1007/s00224-013-9480-1

    Article  MathSciNet  MATH  Google Scholar 

  8. Dell, H., van Melkebeek, D.: Satisfiability allows no nontrivial sparsification unless the polynomial-time hierarchy collapses. J. ACM 61(4), 23:1–23:27 (2014). https://doi.org/10.1145/2629620

    Article  MathSciNet  MATH  Google Scholar 

  9. Donkers, H., Jansen, B.M.P.: A Turing kernelization dichotomy for structural parameterizations of \(\cal{F}\)-minor-free deletion. CoRR abs/1906.05565 (2019). http://arxiv.org/abs/1906.05565

  10. Fernau, H.: Kernelization, Turing kernels. In: Kao, M.Y. (ed.) Encyclopedia of Algorithms, pp. 1043–1045. Springer, New York (2016). https://doi.org/10.1007/978-1-4939-2864-4_528

    Chapter  Google Scholar 

  11. Fomin, F.V., Jansen, B.M.P., Pilipczuk, M.: Preprocessing subgraph and minor problems: When does a small vertex cover help? J. Comput. Syst. Sci. 80(2), 468–495 (2014). https://doi.org/10.1016/j.jcss.2013.09.004

    Article  MathSciNet  MATH  Google Scholar 

  12. Fomin, F.V., Lokshtanov, D., Misra, N., Saurabh, S.: Planar \(\cal{F}\)-deletion: approximation, kernelization and optimal FPT algorithms. In: Proceedings of 53rd FOCS, pp. 470–479 (2012). https://doi.org/10.1109/FOCS.2012.62

  13. Fomin, F.V., Lokshtanov, D., Saurabh, S., Zehavi, M.: Kernelization: Theory of Parameterized Preprocessing. Cambridge University Press, Cambridge (2019). https://doi.org/10.1017/9781107415157

    Book  MATH  Google Scholar 

  14. Fortnow, L., Santhanam, R.: Infeasibility of instance compression and succinct PCPs for NP. J. Comput. Syst. Sci. 77(1), 91–106 (2011). https://doi.org/10.1016/j.jcss.2010.06.007

    Article  MathSciNet  MATH  Google Scholar 

  15. Giannopoulou, A.C., Jansen, B.M.P., Lokshtanov, D., Saurabh, S.: Uniform kernelization complexity of hitting forbidden minors. ACM Trans. Algorithms 13(3), 35:1–35:35 (2017). https://doi.org/10.1145/3029051

    Article  MathSciNet  MATH  Google Scholar 

  16. Guo, J., Hüffner, F., Niedermeier, R.: A structural view on parameterizing problems: distance from triviality. In: Proceedings of 1st IWPEC, pp. 162–173 (2004). https://doi.org/10.1007/978-3-540-28639-4_15

    Chapter  Google Scholar 

  17. Hermelin, D., Kratsch, S., Soltys, K., Wahlström, M., Wu, X.: A completeness theory for polynomial (Turing) kernelization. Algorithmica 71(3), 702–730 (2015). https://doi.org/10.1007/s00453-014-9910-8

    Article  MathSciNet  MATH  Google Scholar 

  18. Iwata, Y.: Linear-time kernelization for feedback vertex set. In: Proceedings of 44th ICALP. LIPIcs, vol. 80, pp. 68:1–68:14 (2017). https://doi.org/10.4230/LIPIcs.ICALP.2017.68

  19. Jansen, B.M.P., Bodlaender, H.L.: Vertex cover kernelization revisited - upper and lower bounds for a refined parameter. Theory Comput. Syst. 53(2), 263–299 (2013). https://doi.org/10.1007/s00224-012-9393-4

    Article  MathSciNet  MATH  Google Scholar 

  20. Jansen, B.M.P., Kratsch, S.: Data reduction for graph coloring problems. Inf. Comput. 231, 70–88 (2013). https://doi.org/10.1016/j.ic.2013.08.005

    Article  MathSciNet  MATH  Google Scholar 

  21. Jansen, B.M.P., Pieterse, A.: Polynomial kernels for hitting forbidden minors under structural parameterizations. In: Proceedings of 26th ESA. LIPIcs, vol. 112, pp. 48:1–48:15 (2018). https://doi.org/10.4230/LIPIcs.ESA.2018.48

  22. Lokshtanov, D., Misra, N., Saurabh, S.: Kernelization - preprocessing with a guarantee. In: The Multivariate Algorithmic Revolution and Beyond, pp. 129–161 (2012). https://doi.org/10.1007/978-3-642-30891-8_10

    Chapter  Google Scholar 

  23. Niedermeier, R.: Reflections on multivariate algorithmics and problem parameterization. In: Proceedings of 27th STACS, pp. 17–32 (2010). https://doi.org/10.4230/LIPIcs.STACS.2010.2495

  24. Thomassé, S.: A \(4k^2\) kernel for feedback vertex set. ACM Trans. Algorithms 6(2) (2010). https://doi.org/10.1145/1721837.1721848

    Article  MathSciNet  Google Scholar 

  25. Uhlmann, J., Weller, M.: Two-layer planarization parameterized by feedback edge set. Theor. Comput. Sci. 494, 99–111 (2013). https://doi.org/10.1016/j.tcs.2013.01.029

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huib Donkers .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Donkers, H., Jansen, B.M.P. (2019). A Turing Kernelization Dichotomy for Structural Parameterizations of \(\mathcal {F}\)-Minor-Free Deletion. In: Sau, I., Thilikos, D. (eds) Graph-Theoretic Concepts in Computer Science. WG 2019. Lecture Notes in Computer Science(), vol 11789. Springer, Cham. https://doi.org/10.1007/978-3-030-30786-8_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-30786-8_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-30785-1

  • Online ISBN: 978-3-030-30786-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics