Skip to main content

The Exponential-Time Complexity of Counting (Quantum) Graph Homomorphisms

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 11789))

Abstract

Many graph parameters can be expressed as homomorphism counts to fixed target graphs; this includes the number of independent sets and the number of k-colorings for any fixed k. Dyer and Greenhill (RSA 2000) gave a sweeping complexity dichotomy for such problems, classifying which target graphs render the problem polynomial-time solvable or \(\#\mathrm {P}\)-hard. In this paper, we give a new and shorter proof of this theorem, with previously unknown tight lower bounds under the exponential-time hypothesis. We similarly strengthen complexity dichotomies by Focke, Goldberg, and Živný (SODA 2018) for counting surjective homomorphisms to fixed graphs. Both results crucially rely on our main contribution, a complexity dichotomy for evaluating linear combinations of homomorphism numbers to fixed graphs. In the terminology of Lovász (Colloquium Publications 2012), this amounts to counting homomorphisms to quantum graphs.

Hubie Chen acknowledges the support of Spanish Project TIN2017-86727-C2-2-R. Radu Curticapean was partly supported by ERC grant SYSTEMATICGRAPH (No. 725978) and VILLUM Foundation grant 16582 while working on this project.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   74.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Björklund, A., Husfeldt, T., Kaski, P., Koivisto, M.: Computing the Tutte polynomial in vertex-exponential time. In: 49th Annual IEEE Symposium on Foundations of Computer Science, FOCS 2008, 25–28 October 2008, Philadelphia, PA, USA, pp. 677–686. IEEE Computer Society (2008). https://doi.org/10.1109/FOCS.2008.40

  2. Borgs, C., Chayes, J.T., Kahn, J., Lovász, L.: Left and right convergence of graphs with bounded degree. Random Struct. Algorithms 42(1), 1–28 (2013). https://doi.org/10.1002/rsa.20414

    Article  MathSciNet  MATH  Google Scholar 

  3. Bulatov, A.A.: The complexity of the counting constraint satisfaction problem. In: Aceto, L., Damgård, I., Goldberg, L.A., Halldórsson, M.M., Ingólfsdóttir, A., Walukiewicz, I. (eds.) ICALP 2008. LNCS, vol. 5125, pp. 646–661. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-70575-8_53

    Chapter  Google Scholar 

  4. Bulatov, A.A., Dalmau, V.: Towards a dichotomy theorem for the counting constraint satisfaction problem. In: Proceedings of 44th Symposium on Foundations of Computer Science (FOCS 2003), 11–14 October 2003, Cambridge, MA, USA, pp. 562–571 (2003). https://doi.org/10.1109/SFCS.2003.1238229

  5. Bulatov, A.A., Dyer, M.E., Goldberg, L.A., Jalsenius, M., Jerrum, M., Richerby, D.: The complexity of weighted and unweighted #CSP. J. Comput. Syst. Sci. 78(2), 681–688 (2012). https://doi.org/10.1016/j.jcss.2011.12.002

    Article  MathSciNet  MATH  Google Scholar 

  6. Bulatov, A.A., Grohe, M.: The complexity of partition functions. Theor. Comput. Sci. 348(2–3), 148–186 (2005). https://doi.org/10.1016/j.tcs.2005.09.011

    Article  MathSciNet  MATH  Google Scholar 

  7. Cai, J.-Y., Chen, X.: Complexity of counting CSP with complex weights. J. ACM 64(3), 19:1–19:39 (2017). https://doi.org/10.1145/2822891

    Article  MathSciNet  MATH  Google Scholar 

  8. Cai, J.-Y., Chen, X., Lu, P.: Graph homomorphisms with complex values: a dichotomy theorem. SIAM J. Comput. 42(3), 924–1029 (2013). https://doi.org/10.1137/110840194

    Article  MathSciNet  MATH  Google Scholar 

  9. Cai, J.-Y., Lu, P., Xia, M.: The complexity of complex weighted boolean #CSP. J. Comput. Syst. Sci. 80(1), 217–236 (2014). https://doi.org/10.1016/j.jcss.2013.07.003

    Article  MathSciNet  MATH  Google Scholar 

  10. Chen, H., Mengel, S.: Counting answers to existential positive queries: a complexity classification. In: Proceedings of the 35th ACM SIGMOD-SIGACT-SIGAI Symposium on Principles of Database Systems, PODS 2016, San Francisco, CA, USA, 26 June–01 July 2016, pp. 315–326 (2016). https://doi.org/10.1145/2902251.2902279

  11. Curticapean, R.: Block interpolation: a framework for tight exponential-time counting complexity. Inf. Comput. 261(Part), 265–280 (2018). https://doi.org/10.1016/j.ic.2018.02.008

    Article  MathSciNet  MATH  Google Scholar 

  12. Curticapean, R., Dell, H., Marx D.: Homomorphisms are a good basis for counting small subgraphs. In: Hatami, H., McKenzie, P., King, V., (eds.) Proceedings of the 49th Annual ACM SIGACT Symposium on Theory of Computing, STOC 2017, Montreal, QC, Canada, 19–23 June 2017, pp. 210–223. ACM (2017). https://doi.org/10.1145/3055399.3055502

  13. Cygan, M., et al.: Tight bounds for graph homomorphism and subgraph isomorphism. In: SODA, pp. 1643–1649. SIAM (2016). https://doi.org/10.1137/1.9781611974331.ch112

  14. Dell, H., Husfeldt, T., Marx, D., Taslaman, N., Wahlen, M.: Exponential time complexity of the permanent and the Tutte polynomial. ACM Trans. Algorithms 10(4), 21:1–21:32 (2014). https://doi.org/10.1145/2635812

    Article  MathSciNet  MATH  Google Scholar 

  15. Dyer, M.E., Goldberg, L.A., Paterson, M.: On counting homomorphisms to directed acyclic graphs. J. ACM 54(6), 27 (2007). https://doi.org/10.1145/1314690.1314691

    Article  MathSciNet  MATH  Google Scholar 

  16. Dyer, M.E., Greenhill, C.S.: The complexity of counting graph homomorphisms. Random Struct. Algorithms 17(3–4), 260–289 (2000). https://doi.org/10.1002/1098-2418(200010/12)17:3/4<260::AID-RSA5>3.0.CO;2-W

    Article  MathSciNet  MATH  Google Scholar 

  17. Dyer, M.E., Richerby, D.: An effective dichotomy for the counting constraint satisfaction problem. SIAM J. Comput. 42(3), 1245–1274 (2013). https://doi.org/10.1137/100811258

    Article  MathSciNet  MATH  Google Scholar 

  18. Faben, J., Jerrum, M.: The complexity of parity graph homomorphism: an initial investigation. Theory Comput. 11, 35–57 (2015). https://doi.org/10.4086/toc.2015.v011a002

    Article  MathSciNet  MATH  Google Scholar 

  19. Flum, J., Grohe, M.: Parameterized Complexity Theory. TTCSAES. Springer, Heidelberg (2006). https://doi.org/10.1007/3-540-29953-X

    Book  MATH  Google Scholar 

  20. Focke, J.,Goldberg, L.A., Živný, S.: The complexity of counting surjective homomorphisms and compactions. In: Czumaj, A. (ed.) Proceedings of the Twenty-Ninth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2018, New Orleans, LA, USA, 7–10 January 2018, pp. 1772–1781. SIAM (2018). https://doi.org/10.1137/1.9781611975031.116

    Chapter  Google Scholar 

  21. Freedman, M., Lovász, L., Schrijver, A.: Reflection positivity, rank connectivity, and homomorphism of graphs. J. Am. Math. Soc. 20(1), 37–51 (2007). https://doi.org/10.1090/S0894-0347-06-00529-7

    Article  MathSciNet  MATH  Google Scholar 

  22. Göbel, A., Goldberg, L.A., Richerby, D.: The complexity of counting homomorphisms to cactus graphs modulo 2. TOCT 6(4), 17:1–17:29 (2014). https://doi.org/10.1145/2635825

    Article  MathSciNet  MATH  Google Scholar 

  23. Göbel, A., Goldberg, L.A., Richerby, D.: Counting homomorphisms to square-free graphs, modulo 2. TOCT 8(3), 12:1–12:29 (2016). https://doi.org/10.1145/2898441

    Article  MathSciNet  MATH  Google Scholar 

  24. Goldberg, L.A., Grohe, M., Jerrum, M., Thurley, M.: A complexity dichotomy for partition functions with mixed signs. SIAM J. Comput. 39(7), 3336–3402 (2010). https://doi.org/10.1137/090757496

    Article  MathSciNet  MATH  Google Scholar 

  25. Impagliazzo, R., Paturi, R.: On the complexity of k-SAT. J. Comput. Syst. Sci. 62(2), 367–375 (2001). https://doi.org/10.1006/jcss.2000.1727

    Article  MathSciNet  MATH  Google Scholar 

  26. Impagliazzo, R., Paturi, R., Zane, F.: Which problems have strongly exponential complexity? J. Comput. Syst. Sci. 63(4), 512–530 (2001). https://doi.org/10.1006/jcss.2001.1774

    Article  MathSciNet  MATH  Google Scholar 

  27. Lovász, L.: Large networks and graph limits, volume 60 of colloquium publications. American Mathematical Society (2012). https://www.ams.org/bookstore-getitem/item=COLL-60

  28. Schrijver, A.: Graph invariants in the edge model. In: Grötschel, M., Katona, O.H., Sági, G. (eds.) Building Bridges. BSMS, vol. 19, pp. 487–498. Springer, Berlin (2008). https://doi.org/10.1007/978-3-540-85221-6_16

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Radu Curticapean .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Chen, H., Curticapean, R., Dell, H. (2019). The Exponential-Time Complexity of Counting (Quantum) Graph Homomorphisms. In: Sau, I., Thilikos, D. (eds) Graph-Theoretic Concepts in Computer Science. WG 2019. Lecture Notes in Computer Science(), vol 11789. Springer, Cham. https://doi.org/10.1007/978-3-030-30786-8_28

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-30786-8_28

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-30785-1

  • Online ISBN: 978-3-030-30786-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics