Skip to main content

Intersection Graphs of Non-crossing Paths

  • Conference paper
  • First Online:
Graph-Theoretic Concepts in Computer Science (WG 2019)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 11789))

Included in the following conference series:

Abstract

We study graph classes modeled by families of non-crossing (NC) connected sets. Two classic graph classes in this context are disk graphs and proper interval graphs. We focus on the cases when the sets are paths and the host is a tree. Forbidden induced subgraph characterizations and linear time certifying recognition algorithms are given for intersection graphs of NC paths of a tree (and related subclasses). For intersection graphs of NC paths of a tree, the dominating set problem is shown to be solvable in linear time. Also, each such graph is shown to have a Hamiltonian cycle if and only if it is 2-connected, and to have a Hamiltonian path if and only if its block-cutpoint tree is a path.

The full version of this article with the appendix referred to herein is on arxiv.org [3].

S. Chaplick—Research supported by DFG grant WO 758/11-1.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 74.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Note: all \(\exists \mathbb {R}\)-hard problems are NP-hard, see [28] for an introduction to \(\exists \mathbb {R}\).

  2. 2.

    Usually defined as having no interval strictly contained within any other.

  3. 3.

    A graph is a split graph when its vertices can be partitioned into a clique and an independent set. It is easy to see that split graphs are chordal.

References

  1. Bertossi, A.A.: Finding Hamiltonian circuits in proper interval graphs. Inf. Process. Lett. 17(2), 97–101 (1983). https://doi.org/10.1016/0020-0190(83)90078-9

    Article  MathSciNet  MATH  Google Scholar 

  2. Booth, K.S., Johnson, J.H.: Dominating sets in chordal graphs. SIAM J. Comput. 11(1), 191–199 (1982). https://doi.org/10.1137/0211015

    Article  MathSciNet  MATH  Google Scholar 

  3. Chaplick, S.: Intersection graphs of non-crossing paths. CoRR abs/1907.00272 (2019)

    Google Scholar 

  4. Chaplick, S., Fomin, F.V., Golovach, P.A., Knop, D., Zeman, P.: Kernelization of graph hamiltonicity: proper H-graphs. In: Friggstad, Z., Sack, J.-R., Salavatipour, M.R. (eds.) WADS 2019. LNCS, vol. 11646, pp. 296–310. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-24766-9_22

    Chapter  Google Scholar 

  5. Chaplick, S., Gutierrez, M., Lévêque, B., Tondato, S.B.: From path graphs to directed path graphs. In: Thilikos, D.M. (ed.) WG 2010. LNCS, vol. 6410, pp. 256–265. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-16926-7_24

    Chapter  Google Scholar 

  6. Chaplick, S., Töpfer, M., Voborník, J., Zeman, P.: On H-topological intersection graphs. In: Bodlaender, H.L., Woeginger, G.J. (eds.) WG 2017. LNCS, vol. 10520, pp. 167–179. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-68705-6_13

    Chapter  Google Scholar 

  7. Chaplick, S., Zeman, P.: Combinatorial problems on H-graphs. In: EUROCOMB, vol. 61, pp. 223–229 (2017). https://doi.org/10.1016/j.endm.2017.06.042

    Article  Google Scholar 

  8. Corneil, D.G., Olariu, S., Stewart, L.: The LBFS structure and recognition of interval graphs. SIAM J. Discrete Math. 23(4), 1905–1953 (2009). https://doi.org/10.1137/S0895480100373455

    Article  MathSciNet  MATH  Google Scholar 

  9. Corneil, D.G., Perl, Y.: Clustering and domination in perfect graphs. Discrete Appl. Math. 9(1), 27–39 (1984). https://doi.org/10.1016/0166-218X(84)90088-X

    Article  MathSciNet  MATH  Google Scholar 

  10. Deng, X., Hell, P., Huang, J.: Linear-time representation algorithms for proper circular-arc graphs and proper interval graphs. SIAM J. Comput. 25(2), 390–403 (1996). https://doi.org/10.1137/S0097539792269095

    Article  MathSciNet  MATH  Google Scholar 

  11. Dietz, P.F.: Intersection graph algorithms. Ph.D. thesis, Cornell University (1984)

    Google Scholar 

  12. Farber, M.: Independent domination in chordal graphs. Oper. Res. Lett. 1(4), 134–138 (1982). https://doi.org/10.1016/0167-6377(82)90015-3

    Article  MathSciNet  MATH  Google Scholar 

  13. Fomin, F.V., Golovach, P.A., Raymond, J.: On the tractability of optimization problems on H-graphs. In: ESA. LIPIcs, vol. 112, pp. 30:1–30:14. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik (2018). https://doi.org/10.4230/LIPIcs.ESA.2018.30

  14. Fulkerson, D., Gross, O.: Incidence matrices and interval graphs. Pac. J. Math. 15, 835–855 (1965)

    Article  MathSciNet  Google Scholar 

  15. Galinier, P., Habib, M., Paul, C.: Chordal graphs and their clique graphs. In: Nagl, M. (ed.) WG 1995. LNCS, vol. 1017, pp. 358–371. Springer, Heidelberg (1995). https://doi.org/10.1007/3-540-60618-1_88

    Chapter  Google Scholar 

  16. Gavril, F.: The intersection graphs of subtrees of trees are exactly the chordal graphs. J. Comb. Theory Ser. B 16, 47–56 (1974)

    Article  MathSciNet  Google Scholar 

  17. Gavril, F.: A recognition algorithm for the intersection graphs of directed paths in directed trees. Discrete Math. 13(3), 237–249 (1975). https://doi.org/10.1016/0012-365X(75)90021-7

    Article  MathSciNet  MATH  Google Scholar 

  18. Gavril, F.: A recognition algorithm for the intersection of graphs of paths in trees. Discrete Math. 23, 211–227 (1978)

    Article  MathSciNet  Google Scholar 

  19. Gavril, F.: Intersection graphs of helly families of subtrees. Discrete Appl. Math. 66, 45–56 (1996)

    Article  MathSciNet  Google Scholar 

  20. Golumbic, M.: Algorithmic Graph Theory and Perfect Graphs. Annals of Discrete Mathematics. Elsevier, Amsterdam (2004)

    MATH  Google Scholar 

  21. Hopcroft, J., Tarjan, R.: Algorithm 447: efficient algorithms for graph manipulation. Commun. ACM 16(6), 372–378 (1973). https://doi.org/10.1145/362248.362272

    Article  Google Scholar 

  22. Kang, R.J., Müller, T.: Sphere and dot product representations of graphs. Discrete Comput. Geom. 47(3), 548–568 (2012)

    Article  MathSciNet  Google Scholar 

  23. Kratochvíl, J.: Intersection graphs of noncrossing arc-connected sets in the plane. In: North, S. (ed.) GD 1996. LNCS, vol. 1190, pp. 257–270. Springer, Heidelberg (1997). https://doi.org/10.1007/3-540-62495-3_53

    Chapter  Google Scholar 

  24. Kumar, P., Madhavan, C.: Clique tree generalization and new subclasses of chordal graphs. Discrete Appl. Math. 117(1–3), 109–131 (2002). https://doi.org/10.1016/S0166-218X(00)00336-X

    Article  MathSciNet  MATH  Google Scholar 

  25. Lai, T., Wei, S.: The edge hamiltonian path problem is NP-complete for bipartite graphs. Inf. Process. Lett. 46(1), 21–26 (1993). https://doi.org/10.1016/0020-0190(93)90191-B

    Article  MathSciNet  MATH  Google Scholar 

  26. Lekkerkerker, C., Boland, J.: Representation of a finite graph by a set of intervals on a real line. Fundam. Math. 51(1), 45–64 (1962)

    Article  MathSciNet  Google Scholar 

  27. Lèvêque, B., Maffray, F., Preissmann, M.: Characterizing path graphs by forbidden induced subgraphs. J. Graph Theory 62, 4 (2009)

    Article  MathSciNet  Google Scholar 

  28. Matousek, J.: Intersection graphs of segments and \(\exists \mathbb{R}\). CoRR abs/1406.2636 (2014). http://arxiv.org/abs/1406.2636

  29. McKee, T., McMorris, F.: Intersection Graph Theory. SIAM (1999)

    Google Scholar 

  30. Monma, C.L., Wei, V.K.: Intersection graphs of paths in a tree. J. Comb. Theory Ser. B 41(2), 141–181 (1986)

    Article  MathSciNet  Google Scholar 

  31. Müller, H.: Hamiltonian circuits in chordal bipartite graphs. Discrete Math. 156(1–3), 291–298 (1996). https://doi.org/10.1016/0012-365X(95)00057-4

    Article  MathSciNet  MATH  Google Scholar 

  32. Narasimhan, G.: A note on the hamiltonian circuit problem on directed path graphs. Inf. Process. Lett. 32(4), 167–170 (1989). https://doi.org/10.1016/0020-0190(89)90038-0

    Article  MathSciNet  MATH  Google Scholar 

  33. Panda, B.S.: The forbidden subgraph characterization of directed vertex graphs. Discrete Math. 196(1–3), 239–256 (1999). https://doi.org/10.1016/S0012-365X(98)00127-7

    Article  MathSciNet  MATH  Google Scholar 

  34. Roberts, F.S.: On nontransitive indifference. J. Math. Psychol. 7(2), 243–258 (1970). https://doi.org/10.1016/0022-2496(70)90047-7

    Article  MathSciNet  MATH  Google Scholar 

  35. Rose, D.J., Tarjan, R.E., Lueker, G.S.: Algorithmic aspects of vertex elimination on graphs. SIAM J. Comput. 5(2), 266–283 (1976). https://doi.org/10.1137/0205021

    Article  MathSciNet  MATH  Google Scholar 

  36. Schäffer, A.A.: A faster algorithm to recognize undirected path graphs. Discrete Appl. Math. 43, 261–295 (1993). https://doi.org/10.1016/0166-218X(93)90116-6

    Article  MathSciNet  MATH  Google Scholar 

  37. Yannakakis, M., Gavril, F.: Edge dominating sets in graphs. SIAM J. Appl. Math. 38(3), 364–372 (1980)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Steven Chaplick .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Chaplick, S. (2019). Intersection Graphs of Non-crossing Paths. In: Sau, I., Thilikos, D. (eds) Graph-Theoretic Concepts in Computer Science. WG 2019. Lecture Notes in Computer Science(), vol 11789. Springer, Cham. https://doi.org/10.1007/978-3-030-30786-8_24

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-30786-8_24

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-30785-1

  • Online ISBN: 978-3-030-30786-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics