Skip to main content

Geometric Representations of Dichotomous Ordinal Data

  • Conference paper
  • First Online:
Graph-Theoretic Concepts in Computer Science (WG 2019)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 11789))

Included in the following conference series:

  • 645 Accesses

Abstract

Motivated by the study of ordinal embeddings in machine learning and by the recognition of Euclidean preferences in computational social science, we study the following problem. Given a graph G, together with a set of relationships between pairs of edges, each specifying that an edge must be longer than another edge, is it possible to construct a straight-line drawing of G satisfying all these relationships?

We mainly consider a dichotomous setting, in which edges are partitioned into short and long, as otherwise there are simple (planar) instances that do not admit a solution. Since the problem is NP-hard even in this setting, we study under which conditions a solution always exists. We prove that degeneracy-2 graphs, subcubic graphs, double-wheels, and 4-colorable graphs in which the short edges induce a caterpillar always admit a realization. These positive results are complemented by negative instances, even when the input graph is composed of a maximal planar graph, namely a double-wheel graph, and an edge. We conjecture that planar graphs always admit a (not necessarily planar) realization in the dichotomous setting.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 74.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Agarwal, S., Wills, J., Cayton, L., Lanckriet, G.R.G., Kriegman, D.J., Belongie, S.J.: Generalized non-metric multidimensional scaling. In: Meila, M., Shen, X. (eds.) AISTATS. JMLR Proceedings, vol. 2, pp. 11–18. JMLR.org (2007)

    Google Scholar 

  2. Aichholzer, O., Hoffmann, M., van Kreveld, M.J., Rote, G.: Graph drawings with relative edge length specifications. In: CCCG (2014)

    Google Scholar 

  3. Ailon, N.: An active learning algorithm for ranking from pairwise preferences with an almost optimal query complexity. J. Mach. Learn. Res. 13, 137–164 (2012)

    MathSciNet  MATH  Google Scholar 

  4. Alam, M.J., Kobourov, S.G., Pupyrev, S., Toeniskoetter, J.: Weak unit disk and interval representation of graphs. In: Mayr, E.W. (ed.) WG 2015. LNCS, vol. 9224, pp. 237–251. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53174-7_17

    Chapter  Google Scholar 

  5. Alon, N., Badoiu, M., Demaine, E.D., Farach-Colton, M., Hajiaghayi, M.T., Sidiropoulos, A.: Ordinal embeddings of minimum relaxation: general properties, trees, and ultrametrics. ACM Trans. Algorithms 4(4), 46:1–46:21 (2008)

    Article  MathSciNet  Google Scholar 

  6. Bennett, J.F., Hays, W.L.: Multidimensional unfolding: determining the dimensionality of ranked preference data. Psychometrika 25(1), 27–43 (1960)

    Article  MathSciNet  Google Scholar 

  7. Borg, I., Groenen, P.: Modern Multidimensional Scaling: Theory and Applications. Springer, Heidelberg (2005)

    MATH  Google Scholar 

  8. Cabello, S., Demaine, E.D., Rote, G.: Planar embeddings of graphs with specified edge lengths. J. Graph Algorithms Appl. 11(1), 259–276 (2007)

    Article  MathSciNet  Google Scholar 

  9. Chen, J., Pruhs, K., Woeginger, G.J.: The one-dimensional Euclidean domain: finitely many obstructions are not enough. Soc. Choice Welf. 48(2), 409–432 (2017)

    Article  MathSciNet  Google Scholar 

  10. Doignon, J., Falmagne, J.: A polynomial time algorithm for unidimensional unfolding representations. J. Algorithms 16(2), 218–233 (1994)

    Article  MathSciNet  Google Scholar 

  11. Eades, P., Wormald, N.C.: Fixed edge-length graph drawing is NP-hard. Discret. Appl. Math. 28(2), 111–134 (1990)

    Article  MathSciNet  Google Scholar 

  12. Elkind, E., Lackner, M.: Structure in dichotomous preferences. In: Yang, Q., Wooldridge, M. (eds.) IJCAI, pp. 2019–2025. AAAI Press (2015)

    Google Scholar 

  13. Jamieson, K.G., Nowak, R.D.: Low-dimensional embedding using adaptively selected ordinal data. In: Allerton Conference on Communication, Control, and Computer, pp. 1077–1084. IEEE (2011)

    Google Scholar 

  14. Kruskal, J.: Multidimensional scaling by optimizing goodness of fit to a nonmetric hypothesis. Psychometrika 29(1), 1–27 (1964)

    Article  MathSciNet  Google Scholar 

  15. Kruskal, J.: Nonmetric multidimensional scaling: a numerical method. Psychometrika 29(2), 115–129 (1964)

    Article  MathSciNet  Google Scholar 

  16. Peters, D.: Recognising multidimensional Euclidean preferences. In: Singh, S.P., Markovitch, S. (eds.) AAAI, pp. 642–648. AAAI Press (2017)

    Google Scholar 

  17. Quist, M., Yona, G., Yu, B.: Distributional scaling: an algorithm for structure-preserving embedding of metric and nonmetric spaces. J. Mach. Learn. Res. 5, 399–420 (2004)

    MathSciNet  MATH  Google Scholar 

  18. Saxe, J.B.: Embeddability of weighted graphs in \(k\)-space is strongly NP-hard. In: 17th Allerton Conference on Communication, Control, and Computer, pp. 480–489. IEEE (1979)

    Google Scholar 

  19. Shepard, R.N.: The analysis of proximities: multidimensional scaling with an unknown distance function. I. Psychometrika 27(2), 125–140 (1962)

    Article  MathSciNet  Google Scholar 

  20. Shepard, R.N.: The analysis of proximities: multidimensional scaling with an unknown distance function. II. Psychometrika 27(3), 219–246 (1962)

    Article  MathSciNet  Google Scholar 

  21. Terada, Y., von Luxburg, U.: Local ordinal embedding. In: ICML. JMLR Workshop and Conference Proceedings, vol. 32, pp. 847–855. JMLR.org (2014)

    Google Scholar 

  22. Vo, D., Vo, N., Challa, S.: Weighted MDS for Sensor Localization. In: Gervasi, O., Murgante, B., Laganà, A., Taniar, D., Mun, Y., Gavrilova, M.L. (eds.) ICCSA 2008. LNCS, vol. 5073, pp. 409–418. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-69848-7_34

    Chapter  Google Scholar 

Download references

Acknowledgement

The authors would like to thank Michael Kaufmann and Ulrike von Luxburg for useful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patrizio Angelini .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Angelini, P., Bekos, M.A., Gronemann, M., Symvonis, A. (2019). Geometric Representations of Dichotomous Ordinal Data. In: Sau, I., Thilikos, D. (eds) Graph-Theoretic Concepts in Computer Science. WG 2019. Lecture Notes in Computer Science(), vol 11789. Springer, Cham. https://doi.org/10.1007/978-3-030-30786-8_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-30786-8_16

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-30785-1

  • Online ISBN: 978-3-030-30786-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics