Skip to main content

Travelling on Graphs with Small Highway Dimension

  • Conference paper
  • First Online:
Book cover Graph-Theoretic Concepts in Computer Science (WG 2019)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 11789))

Included in the following conference series:

Abstract

We study the Travelling Salesperson (TSP) and the Steiner Tree problem (STP) in graphs of low highway dimension. This graph parameter was introduced by Abraham et al. [SODA 2010] as a model for transportation networks, on which TSP and STP naturally occur for various applications in logistics. It was previously shown [Feldmann et al. ICALP 2015] that these problems admit a quasi-polynomial time approximation scheme (QPTAS) on graphs of constant highway dimension. We demonstrate that a significant improvement is possible in the special case when the highway dimension is 1, for which we present a fully-polynomial time approximation scheme (FPTAS). We also prove that STP is weakly \(\mathsf {NP}\)-hard for these restricted graphs. For TSP we show \(\mathsf {NP}\)-hardness for graphs of highway dimension 6, which answers an open problem posed in [Feldmann et al. ICALP 2015].

Y. Disser—Supported by the ‘Excellence Initiative’ of the German Federal and State Governments and the Graduate School CE at TU Darmstadt.

A. E. Feldmann—Supported by the Czech Science Foundation GAČR (grant #17-10090Y), and by the Center for Foundations of Modern Computer Science (Charles Univ. project UNCE/SCI/004).

M. Klimm—Supported by the German Research Foundation (DFG) as part of Math\(^+\) (project AA3-4).

J. Könemann—Supported by the Discovery Grant Program of the Natural Sciences and Engineering Research Council of Canada.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 74.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    A metric is said to have doubling dimension d if for all \(r>0\) every ball of radius r can be covered by at most \(2^d\) balls of half the radius r/2.

  2. 2.

    It is often assumed that all shortest paths are unique when defining the highway dimension, since this allows good polynomial approximations of this graph parameter [2]. In this work however, we do not rely on these approximations, and thus do not require uniqueness of shortest paths.

  3. 3.

    The proofs of Theorems 3 and 4 are deferred to the full version of the paper.

  4. 4.

    See [24, Section 9] and [15] for detailed discussions on different definitions of the highway dimension.

References

  1. Abraham, I., Delling, D., Fiat, A., Goldberg, A.V., Werneck, R.F.: Highway dimension and provably efficient shortest path algorithms. J. ACM 63(5), 41 (2016)

    Article  MathSciNet  Google Scholar 

  2. Abraham, I., Delling, D., Fiat, A., Goldberg, A.V., Werneck, R.F.: VC-dimension and shortest path algorithms. In: Aceto, L., Henzinger, M., Sgall, J. (eds.) ICALP 2011. LNCS, vol. 6755, pp. 690–699. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-22006-7_58

    Chapter  MATH  Google Scholar 

  3. Abraham, I., Fiat, A., Goldberg, A.V., Werneck, R.F.: Highway dimension, shortest paths, and provably efficient algorithms. In: Proceedings of the 21st Annual ACM-SIAM Symposium Discrete Algorithms (SODA), pp. 782–793 (2010)

    Google Scholar 

  4. Arora, S.: Polynomial time approximation schemes for Euclidean traveling salesman and other geometric problems. J. ACM 45(5), 753–782 (1998)

    Article  MathSciNet  Google Scholar 

  5. Arora, S., Grigni, M., Karger, D.R., Klein, P.N., Woloszyn, A.: A polynomial-time approximation scheme for weighted planar graph TSP. In: Proceedings of the 9th Annual ACM-SIAM Symposium Discrete Algorithms (SODA), pp. 33–41 (1998)

    Google Scholar 

  6. Arora, S., Lund, C., Motwani, R., Sudan, M., Szegedy, M.: Proof verification and hardness of approximation problems. In: Proceedings of the 33rd Annual IEEE Symposium Foundations Computer Science (FOCS), pp. 14–23 (1992)

    Google Scholar 

  7. Arora, S., Raghavan, P., Rao, S.: Approximation schemes for Euclidean \(k\)-medians and related problems. In: Proceedings of the 30th Annual ACM Symposium Theory Computer (STOC), pp. 106–113 (1998)

    Google Scholar 

  8. Bartal, Y., Gottlieb, L.-A., Krauthgamer, R.: The traveling salesman problem: low-dimensionality implies a polynomial time approximation scheme. In: Proceedings of the 44th Annual ACM Symposium Theory Computer (STOC), pp. 663–672 (2012)

    Google Scholar 

  9. Bast, H., Funke, S., Matijevic, D.: Ultrafast shortest-path queries via transit nodes. In: The Shortest Path Problem: Ninth DIMACS Implementation Challenge, vol. 74, pp. 175–192 (2009)

    Google Scholar 

  10. Bast, H., Funke, S., Matijevic, D., Sanders, P., Schultes, D.: In transit to constant time shortest-path queries in road networks. In: Proceedings of the 9th Workshop Algorithm Engineering and Experiments (ALENEX) (2007)

    Chapter  Google Scholar 

  11. Bateni, M., Hajiaghayi, M.T., Marx, D.: Approximation schemes for Steiner forest on planar graphs and graphs of bounded treewidth. J. ACM 58, 21:1–21:37 (2011)

    Article  MathSciNet  Google Scholar 

  12. Becker, A., Klein, P.N., Saulpic, D.: Polynomial-time approximation schemes for \(k\)-center, \(k\)-median, and capacitated vehicle routing in bounded highway dimension. In: Proceedings of the 26th Annual European Symposium on Algorithms (ESA 2018), pp. 8:1–8:15 (2018)

    Google Scholar 

  13. Bern, M., Plassmann, P.: The Steiner problem with edge lengths 1 and 2. Inform. Process. Lett. 32, 171–176 (1989)

    Article  MathSciNet  Google Scholar 

  14. Bland, R., Shallcross, D.: Large traveling salesman problems arising from experiments in X-ray crystallography: a preliminary report on computation. Oper. Res. Lett. 8, 125–128 (1989)

    Article  MathSciNet  Google Scholar 

  15. Blum, J.: Hierarchy of transportation network parameters and hardness results (2019). arXiv: 1905.11166 [cs.DM]

  16. Bodlaender, H.L., Cygan, M., Kratsch, S., Nederlof, J.: Deterministic single exponential time algorithms for connectivity problems parameterized by treewidth. In: Fomin, F.V., Freivalds, R., Kwiatkowska, M., Peleg, D. (eds.) ICALP 2013. LNCS, vol. 7965, pp. 196–207. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-39206-1_17

    Chapter  Google Scholar 

  17. Borndörfer, R., Neumann, M., Pfetsch, M.E.: The line connectivity problem. In: Fleischmann, B., Borgwardt, K.H., Klein, R., Tuma, A. (eds.) Operations Research Proceedings, pp. 557–562. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-642-00142-0_90

    Chapter  Google Scholar 

  18. Borradaile, G., Kenyon-Mathieu, C., Klein, P.: A polynomial-time approximation scheme for Steiner tree in planar graphs. In: Proceedings of the 18th Annual ACM-SIAM Symposium Discrete Algorithms (SODA), pp. 1285–1294 (2007)

    Google Scholar 

  19. Byrka, J., Grandoni, F., Rothvoß, T., Sanità, L.: An improved LP-based approximation for Steiner tree. In: Proceedings of the 42nd Annual ACM Symposium Theory Computer (STOC), pp. 583–592 (2010)

    Google Scholar 

  20. Chen, C.Y., Grauman, K.: Efficient activity detection in untrimmed video with max-subgraph search. IEEE Trans. Pattern Anal. Mach. Intell. 39, 908–921 (2018)

    Article  Google Scholar 

  21. Chlebík, M., Chlebíková, J.: The Steiner tree problem on graphs: inapproximability results. Theor. Comput. Sci. 406, 207–214 (2008)

    Article  MathSciNet  Google Scholar 

  22. Chowdhury, S.A., Shackney, S.E., Heselmeyer-Haddad, K., Ried, T., Schäffer, A.A., Schwartz, R.: Phylogenetic analysis of multiprobe uorescence in situ hybridization data from tumor cell populations. Bioinformatics 29, i189–i198 (2013)

    Article  Google Scholar 

  23. Christofides, N.: Worst-case analysis of a new heuristic for the travelling salesman problem. Technical report 388. Graduate School of Industrial Administration, Carnegie Mellon University (1976)

    Google Scholar 

  24. Feldmann, A.E., Fung, W.S., Könemann, J., Post, I.: A (1+\(\epsilon \))-embedding of low highway dimension graphs into bounded treewidth graphs. SIAM J. Comput. 41, 1667–1704 (2018)

    Article  MathSciNet  Google Scholar 

  25. Feldmann, A.E.: Fixed parameter approximations for \(k\)-center problems in low highway dimension graphs. Algorithmica (2018)

    Google Scholar 

  26. Feldmann, A.E., Marx, D.: The parameterized hardness of the k-center problem in transportation networks. In: Proceedings of the 16th Scandinavian Symposium and Workshop Algorithm Theory (SWAT), pp. 19:1–19:13 (2018)

    Google Scholar 

  27. Garey, M.R., Johnson, D.S.: The rectilinear Steiner tree problem is NP-complete. SIAM J. Appl. Math. 32, 826–834 (1977)

    Article  MathSciNet  Google Scholar 

  28. Grigni, M., Koutsoupias, E., Papadimitriou, C.H.: An approximation scheme for planar graph TSP. In: Proceedings of the 36th Annual IEEE Symposium Foundations Computer Science (FOCS), pp. 640–645 (1995)

    Google Scholar 

  29. Grötschel, M., Holland, O.: Solution of large-scale symmetric travelling salesman problems. Math. Program. 51, 141–202 (1991)

    Article  MathSciNet  Google Scholar 

  30. Held, S., Korte, B., Rautenbach, D., Vygen, J.: Combinatorial optimization in VLSI design. In: Chvatal, V. (ed.) Combinatorial Optimization: Methods and Applications, pp. 33–96. IOS Press, Amsterdam (2011)

    MATH  Google Scholar 

  31. Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. J. ACM 33(3), 533–550 (1986)

    Article  MathSciNet  Google Scholar 

  32. Hougardy, S., Prömel, H.J.: A 1.598 approximation algorithm for the Steiner problem in graphs. In: Proceedings of the 10th Annual ACM-SIAM Symposium Discrete Algorithms (SODA), pp. 448–453 (1999)

    Google Scholar 

  33. Karp, R.M.: Reducibility among combinatorial problems. In: Miller, R.E., Thatcher, J.W., Bohlinger, J.D. (eds.) Complexity of Computer Computations. IRSS, pp. 85–103. Springer, Boston (1972). https://doi.org/10.1007/978-1-4684-2001-2_9

    Chapter  Google Scholar 

  34. Karpinski, M., Lampis, M., Schmied, R.: New inapproximability bounds for TSP. J. Comput. Syst. Sci. 81, 1665–1677 (2015)

    Article  MathSciNet  Google Scholar 

  35. Katsikarelis, I., Lampis, M., Paschos, V.T.: Structural parameters, tight bounds, and approximation for (\(k, r\))-center. In: Proceedings of the 28th International Symposium Algorithms Computer (ISAAC), pp. 50:1–50:13 (2017)

    Google Scholar 

  36. Klein, P.: A linear-time approximation scheme for TSP in undirected planar graphs with edge-weights. SIAM J. Comput. 37(6), 1926–1952 (2008)

    Article  MathSciNet  Google Scholar 

  37. Kosowski, A., Viennot, L.: Beyond highway dimension: small distance labels using tree skeletons. In: Proceedings of the 28th Annual ACM-SIAM Symposium Discrete Algorithms (SODA), pp. 1462–1478 (2017)

    Google Scholar 

  38. Krauthgamer, R., Lee, J.R.: Algorithms on negatively curved spaces. In: Proceedings of the 47th Annual IEEE Symposium Foundations Computer Science (FOCS), pp. 119–132 (2006)

    Google Scholar 

  39. Lampis, M.: Improved inapproximability for TSP. Theory Comput. 10, 217–236 (2014)

    Article  MathSciNet  Google Scholar 

  40. Laporte, G., Nobert, Y., Desrochers, M.: Optimal routing under capacity and distance restrictions. Oper. Res. 33, 1050–1073 (1985)

    Article  MathSciNet  Google Scholar 

  41. Lenstra, J., Rinnooy Kan, A.: Some simple applications of the traveling salesman problem. Oper. Res. Quart. 26, 717–733 (1975)

    Article  Google Scholar 

  42. Ljubić, I., Weiskirchner, R., Pferschy, U., Klau, G.W., Mutzel, P., Fischetti, M.: An algorithmic framework for the exact solution of the prizecollecting Steiner tree problem. Math. Program. 105, 427–449 (2006)

    Article  MathSciNet  Google Scholar 

  43. Loboda, A.A., Artyomov, M.N., Sergushichev, A.A.: Solving generalized maximum-weight connected subgraph problem for network enrichment analysis. In: Frith, M., Storm Pedersen, C.N. (eds.) WABI 2016. LNCS, vol. 9838, pp. 210–221. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-43681-4_17

    Chapter  Google Scholar 

  44. Mitchell, J.S.B.: Guillotine subdivisions approximate polygonal subdivisions: a simple polynomial-time approximation scheme for geometric TSP, \(k\)-MST, and related problems. SIAM J. Comput. 28(4), 1298–1309 (1999)

    Article  MathSciNet  Google Scholar 

  45. Papadimitriou, C.H., Vempala, S.: On the approximability of the traveling salesman problem. Combinatorica 26, 101–120 (2006)

    Article  MathSciNet  Google Scholar 

  46. Robins, G., Zelikovsky, A.: Tighter bounds for graph Steiner tree approximation. SIAM J. Discret. Math. 19, 122–134 (2005)

    Article  MathSciNet  Google Scholar 

  47. Sebő, A., Vygen, J.: Shorter tours by nicer ears: 7/5-approximation for the graph-TSP, 3/2 for the path version, and 4/3 for two-edge-connected subgraphs. Combinatorica 34, 1–34 (2014)

    Article  MathSciNet  Google Scholar 

  48. Trevisan, L.: When Hamming meets Euclid: the approximability of geometric TSP and Steiner tree. SIAM J. Comput. 30, 475–485 (2000)

    Article  MathSciNet  Google Scholar 

  49. Vazirani, V.V.: Approximation Algorithms. Springer, New York (2001)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andreas Emil Feldmann .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Disser, Y., Feldmann, A.E., Klimm, M., Könemann, J. (2019). Travelling on Graphs with Small Highway Dimension. In: Sau, I., Thilikos, D. (eds) Graph-Theoretic Concepts in Computer Science. WG 2019. Lecture Notes in Computer Science(), vol 11789. Springer, Cham. https://doi.org/10.1007/978-3-030-30786-8_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-30786-8_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-30785-1

  • Online ISBN: 978-3-030-30786-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics