Skip to main content

Biofilms in Human Health

  • Chapter
  • First Online:
Biofilms in Human Diseases: Treatment and Control

Abstract

Biofilm is a surface-attached cluster of microorganisms rooted and proliferating in a self-fabricated matrix of polymeric materials. Bacteria existing in biofilms can be more resilient in comparison with their free-floating counterparts to antimicrobials. Biofilms play a substantial role in human disease transmission and perseverance, especially for inert surface-related disease, like cases of infections related to medical devices for internal or external use. Due to their better resistance against macrophages and antibiotics in comparison to free living cells, biofilm-triggered infections on implants are difficult to eradicate. While the formation of biofilms is largely understood, the means of eliminating and controlling them once they have been formed are still the subject of research. Biofilms associated in medicine are particularly difficult to handle due to the sensitivity of the human tissue and medical devices. The chapter aims at discussing biofilm development, their influence on human health and difficulties related to biofilm control.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Andersson DI, Hughes D (2014) Microbiological effects of sublethal levels of antibiotics. Nat Rev Microbiol 127:465–478

    Article  CAS  Google Scholar 

  • Baier RE (1984) Initial events in microbial film formation. In: Costlow JD, Tipper RC (eds) Marine biodeterioration: an interdisciplinary study. Naval Institute Press, Annapolis, MD, pp 57–62

    Chapter  Google Scholar 

  • Bamford CV, d’Mello A, Nobbs AH et al (2009) Streptococcus gordonii modulates Candida albicans biofilm formation through intergeneric communication. Infect Immun 779:3696–3704

    Article  CAS  Google Scholar 

  • Bashan Y, Levanony H (1998) Active attachment of Azospirillum brasilence cd to quartz sand to a light textured soil by protein bridging. J Gen Microbiol 134:2269–2279

    Google Scholar 

  • Beech IB, Gaylarde CC (1989) Adhesion of Desulfovibrio desulfuricans and Pseudomonas fluorescens to mild steel surfaces. J Appl Bacteriol 67:201–207

    Article  Google Scholar 

  • Bendinger B, Rijnaarts HHM, Altendorf K, Zehnder AJB (1993) Physicochemical cell surface and adhesive properties of coryneform bacteria related to the presence and chain length of mycolic acids. Appl Environ Microbiol 59:3973–3977

    CAS  PubMed  PubMed Central  Google Scholar 

  • Branski LK, Al-Mousawi A, Rivero H et al (2009) Emerging infections in burns. Surg Infect (Larchmt) 105:389–397

    Article  Google Scholar 

  • Brown CM, Ellwood DC, Hunter JR (1977) Growth of bacteria at surfaces influence of nutrient limitation. FEMS MicrobiolLett 1:163–166

    Article  CAS  Google Scholar 

  • Bryers JD (1984) Biofilm formation and chemostat dynamics: pure and mixed culture considerations. Biotechnol Bioengrg 26:948–958

    Article  CAS  Google Scholar 

  • Bryers JD (1987) Biologically active surfaces; processes governing the formation and persistence of biofilms. Biotechnology 3:57–68

    CAS  Google Scholar 

  • Bullitt R, Makowski L (1995) Structural polymorphism of bacterial adhesion pili. Nature 373:164–167

    Article  CAS  PubMed  Google Scholar 

  • Busscher HJ, Weerkamp AH (1987) Specific and non specific interactions in bacterial adhesions to soild support. FEMS Microbiol 46:165–173

    Article  CAS  Google Scholar 

  • Carmona-Torre F, Yuste JR, Castejon S et al (2017) Catheter-related bloodstream infections in patients with oncohaematological malignancies. Lancet Infect Dis 172:139–140

    Article  Google Scholar 

  • Chamberlain A.H.L. (1992). Biofilms and corrosion. In: Melo LF, Bott TR, Fletcher M, Capdeville B (eds) Biofilms—science and technology. NATO ASI Series (Series E: Applied Sciences), vol 223. Springer, Dordrecht

    Google Scholar 

  • Characklis WG (1981) Fouling biofilm development: a process analysis. Biotechnol Bioeng 23:1923–1960

    Article  CAS  Google Scholar 

  • Characklis WG, Cooksey KE (1983) Biofilms and microbial fouling. Appl Microbiol 29:93–138

    Article  CAS  Google Scholar 

  • Characklis WG, McFetes GA (1990) Physiological ecology in biofilm systems. In: Marchall KC, Characklis WG (eds) Biofilms. Willey and Sons, New York, pp 341–393

    Google Scholar 

  • Characklis WG, Turakhia MH (1990) Transfer and interfacial transport phenomena. In: Marchall KC, Characklis WG (eds) Biofilms. Willey and Sons, New York, pp 265–340

    Google Scholar 

  • Ciampolini J, Harding KG (2000) Pathophysiology of chronic bacterial osteomyelitis. Why do antibiotics fail so often? Postgrad Med J 76(898):479–483

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cochrane DMG (1988) Immune response to bacterial biofilms. Med Microbiol J 27:255

    Article  CAS  Google Scholar 

  • Colombo AP, Boches SK, Cotton SL et al (2009) Comparisons of subgingival microbial profiles of refractory periodontitis, severe periodontitis, and periodontal health using the human oral microbe identification microarray. J Periodontol 80(9):1421–1432

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Connell JH, Slatyer RO (1977) Mechanisms of succession in natural communities and their rolein community stability and organization. Am Nat 111:1119–1144

    Article  Google Scholar 

  • Cooper RA, Bjarnsholt T, Alhede M (2014) Biofilms in wounds: a review of present knowledge. J Wound Care 23(11):570, 572–574, 576–580 passim

    Google Scholar 

  • Corpe WA (1970) An acid polysaccharide produced by a primary film forming marine bacterium. Dev Ind Microbiol 11:402–412

    Google Scholar 

  • Corpe WA (1980) Microbial surface components involved in adsorption of microorganisms ontosurfaces. In: Bitton G, Marshall KC (eds) Adsorption of microorganisms to surfaces. Wiley, New York, pp 105–144

    Google Scholar 

  • Costerton JW, Geesey GG, Cheng K-J (1978) How bacteria stick. Sci Am 238:86–95

    Article  CAS  PubMed  Google Scholar 

  • Costerton JW, Irvin RT, Cheng KJ (1981) The bacterial glycocalyx in nature and disease. Annu Rev Microbiol 35:299–324

    Article  CAS  PubMed  Google Scholar 

  • Costerton JW, Lashen ES (1984) The influence of biofilm efficacy of biocides on corrosion causing bacteria. Mater Perform 23:34–37

    Google Scholar 

  • Costerton JW, Lewandowski Z, Caldwell DE, Korber DR, Lappin-Scott HM (1995) Microbial biofilms. Annu Rev Microbiol 49:711–745

    Article  CAS  PubMed  Google Scholar 

  • Danielsson A, Norkrans B, Bjornsson A (1977) On bacterial adhesion—the effect of certain enzymes on adhered cells in a marine Pseudomonas sp. Bot Mar 20:13–17

    Google Scholar 

  • Del Pozo JL, Patel R (2013) Are antibiotics and surgery sufficient to treat biofilm-associated infections? Enferm Infecc Microbiol Clin 3110:641–642

    Article  Google Scholar 

  • Fazli M, Bjarnsholt T, Kirketerp-Moller K et al (2009) Nonrandom distribution of Pseudomonas aeruginosa and Staphylococcus aureus in chronic wounds. J Clin Microbiol 47(12):4084–4089

    Article  PubMed  PubMed Central  Google Scholar 

  • Flemming H-C, Wingender J, Griegbe T, Mayer C (2000) Physico-chemical properties of biofilms. In: Evans LV (ed) Biofilms: recent advances in their study and control. Harwood Academic, Amsterdam, pp 19–34

    Google Scholar 

  • Fletcher M (1977) The effects of culture concentration and age, time, and temperature on bacterial attachment to polystyrene. Can J Microbiol 23:1–6

    Article  Google Scholar 

  • Fletcher M (1980) The question of passive versus active attachment mechanisms in non-specificbacterial adhesion. In: Berkeley RCW (ed) Microbial adhesion to surfaces. Horwood, Chichester, pp 67–78

    Google Scholar 

  • Fletcher M, Marshall KC (1982) Are solid surfaces of ecological significance to aquatic bacteria? Adv Microb Ecol 12:199–236

    Article  Google Scholar 

  • Foreman A, Jervis-Bardy J, Wormald PJ (2011) Do biofilms contribute to the initiation and recalcitrance of chronic rhinosinusitis? Laryngoscope 1215:1085–1091

    Article  Google Scholar 

  • Fredrickson AG (1977) Behaviour of mixed cultures of microorganisms. Annu Rev Microbiol 33:63–87

    Article  Google Scholar 

  • Fux CA, Costerton JW, Stewart PS et al (2005) Survival strategies of infectious biofilms. Trends Microbiol 131:34–40

    Article  CAS  Google Scholar 

  • Gajer P, Brotman RM, Bai G et al (2012) Temporal dynamics of the human vaginal microbiota. Sci Transl Med 4(132):132ra52

    Article  PubMed  PubMed Central  Google Scholar 

  • Gilbert P, Maira-Litran T, McBain AJ et al (2002) The physiology and collective recalcitrance of microbial biofilm communities. Adv Microb Physiol 46:202–256

    PubMed  Google Scholar 

  • Hall-Stoodley L, Costerton JW, Stoodley P (2004) Bacterial biofilms: from the natural environment to infectious diseases. Nat Rev Microbiol 2(2):95–108

    Article  CAS  PubMed  Google Scholar 

  • Hamilton WA, Characklis WG (1989) Relative activities of cells in suspension and in biofilms. In: Characklis WG, Wilderer PA (eds) Structure and function of biofilms. Wiley, New York, pp 199–219

    Google Scholar 

  • Han YW, Wang X (2013) Mobile microbiome: oral bacteria in extra-oral infections and inflammation. J Dent Res 926:485–491

    Article  Google Scholar 

  • Heukelekian H, Heller A (1940) Relation between food concentration and surface for bacterial growth. J Bacteriol 40:547–558

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hoiby N, Ciofu O, Johansen HK et al (2011) The clinical impact of bacterial biofilms. Int J Oral Sci 3(2):55–65

    Article  PubMed  PubMed Central  Google Scholar 

  • James GA, Beaudette L, Costerton JW (1995) Interspecies bacterial interactions in biofilms. J Ind Microbiol 15:257–262

    Article  CAS  Google Scholar 

  • Lafaurie GI, Sabogal MA, Castillo DM et al (2017) Microbiome and microbial biofilm profiles of peri-implantitis: a systematic review. J Periodontol 1–26

    Google Scholar 

  • Lamont RJ, Jenkinson HF (1998) Life below the gum line: pathogenic mechanisms of Porphyromonas gingivalis. Microbiol Mol Biol Rev 62(4):1244–1263

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lappin-Scott HM, Jass J, Costerton JW (1993) Microbial biofilm formation and characterisation. Society for applied bacteriology technical series no. 30. Soc Appl Bacteriol, Bedford

    Google Scholar 

  • Leclair LW, Hogan DA (2010) Mixed bacterial-fungal infections in the CF respiratory tract. Mycol 48 Suppl 1:S125–32

    Google Scholar 

  • Macfarlane S (2008) Microbial biofilm communities in the gastrointestinal tract. J Clin Gastroenterol 42Suppl 3Pt 1:S142–3

    Google Scholar 

  • Marmur A, Ruckenstein E (1986) Gravity and cell adhesion. J Colloid Interface Sci 114:261–266

    Article  Google Scholar 

  • Marsh PD, Zaura E (2014) Dental biofilm: ecological interactions in health and disease. J Clin Periodontol 44Suppl 18:S12–S22

    Google Scholar 

  • Marshall KC (1992) Biofilms: a overview of bacterial adhesion, activity and control at surfaces. Am Soc Microbiol News 58:202–207

    Google Scholar 

  • Marshall KC, Stout R, Mitchell R (1971) Mechanism of the initial events in the sorption of marinebacteria to surfaces. J Gen Microbiol 68:337–348

    Article  CAS  Google Scholar 

  • Mittelman MW (1996) Adhesion to biomaterials. In: Fletcher M (ed) Bacterial adhesion: molecular and ecological diversity. Wiley-Liss, New York, pp 89–127

    Google Scholar 

  • Palmer R Jr, White DC (1997) Developmental biology of biofilms: implications for treatment andcontrol. Trends Microbiol 5:435–440

    Article  PubMed  Google Scholar 

  • Palmer RJ (2010) Supragingival and subgingival plaque: paradigm of biofilms. Compend Contin Edu Dent 31(2): 104–106, 108, 110 passim; quiz 24, 38

    Google Scholar 

  • Parsek MR, Singh PK (2003) Bacterial biofilms: an emerging link to disease pathogenesis. Annu Rev Microbiol 57:677–701

    Article  CAS  PubMed  Google Scholar 

  • Percival SL, Thomas JG (2009) Helicobacter pylori prevalence and transmission and role of biofilms. Water Health 7(3):469–477

    Article  Google Scholar 

  • Percival SL, Walker J, Hunter P (2000) Microbiological aspects of biofilms and drinking water. CRC Press, New York

    Book  Google Scholar 

  • Percival SL, Walker JT (1999) Biofilms and public health significance. Biofouling 14:99–115

    Article  Google Scholar 

  • Percival SL (2017) Importance of biofilm formation in surgical infection. Br J Surg 1042:e85–e94

    Article  Google Scholar 

  • Pringle JH, Fletcher M (1983) Influence of substratum wettability on attachment of freshwater bacteria to solid surfaces. Appl Environ Microbiol 45:811–817

    CAS  PubMed  PubMed Central  Google Scholar 

  • Reid G, Bruce AW, Taylor M (1992) Influence of three-day antimicrobial therapy and lactobacillus vaginal suppositories on recurrence of urinary tract infections. Clin Ther 14(1):11–16

    CAS  PubMed  Google Scholar 

  • Rittle KH, Helmstetter CE, Meyer AE, Baier RE (1990) Escherichia coli retention on solidsurfaces as functions of substratum surface energy and cell growth phase. Biofouling 2:121–130

    Article  Google Scholar 

  • Rosenberg M, Kjelleberg S (1986) Hydrophobic interactions in bacterial adhesion. Adv Microb Ecol 9:353–393

    Article  CAS  Google Scholar 

  • Seth AK, Geringer MR, Hong SJ et al (2012) Comparative analysis of single-species and polybacterial wound biofilms using a quantitative, in vivo, rabbit ear model. PLoS ONE 78:e42897

    Article  CAS  Google Scholar 

  • Singh PK, Schaefer AL, Parsek MR et al (2000) Quorum-sensing signals indicate that cystic fibrosis lungs are infected with bacterial biofilms. Nature 407(6805):762–764

    Article  CAS  PubMed  Google Scholar 

  • Stewart PS, Camper AK, Handran SD, Huang CT, Warnecke M (1997) Spatial distribution and coexistence of Klebsiella pneumoniae and Pseudomonas aeruginosa in biofilms. Microb Ecol 33:2–10

    Article  CAS  PubMed  Google Scholar 

  • Sutherland IW (2001) The biofilm matrix: an immobilized but dynamic microbial environment. Trends Microbiol 9:222–227

    Article  CAS  PubMed  Google Scholar 

  • Uhlinger DJ, White DC (1983) Relationship between physiological status and formation of extracellular polysaccharide glycocalyx in Pseudomonas atlantica. Appl Environ Microbiol 45:64–70

    CAS  PubMed  PubMed Central  Google Scholar 

  • Vieira MJ, Oliveira R, Melo L, Pinheiro M, van der Mei H (1992) Adhesion of Pseudomonas fluorescens to metallic surfaces. J Dispers Sci Technol 13(4):437–445

    Google Scholar 

  • Vyas KS, Wong LK (2016) Detection of biofilm in wounds as an early indicator for risk for tissue infection and wound chronicity. Ann Plast Surg 761:127–131

    Article  CAS  Google Scholar 

  • Wahl M (1989) Marine epibiosis. 1. Fouling and antifouling: some basic aspects. Mar Ecol Prog Ser 58:175–189

    Article  Google Scholar 

  • Walt DR, Smulow JB, Turesky SS, Hill RG (1985) The effect of gravity on initial microbial adhesion. J Colloid Interface Sci 107:334–336

    Article  CAS  Google Scholar 

  • Ward KH, Olson ME, Lam K, Costerton JW (1992) Mechanism of persistent infection associated with peritoneal implant. J Med Microbiol 36:406

    Article  CAS  PubMed  Google Scholar 

  • Whittaker CJ, Klier CM, Kolenbrander PE (1996) Mechanisms of adhesion by oral bacteria. Ann Rev Microbiol 50:513–552

    Article  CAS  Google Scholar 

  • Yousefi M, Pourmand MR, Fallah F et al (2016) Characterization of Staphylococcus aureus biofilm formation in urinary tract infection. Iran J Public Health 45(4):485–493

    PubMed  PubMed Central  Google Scholar 

  • Zobell CE (1943) The effect of solid surfaces upon bacterial activity. J Bacteriol 46(1):39–56

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Surojeet Das .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Das, S., Singh, S., Matchado, M.S., Srivastava, A., Bajpai, A. (2019). Biofilms in Human Health. In: Kumar, S., Chandra, N., Singh, L., Hashmi, M., Varma, A. (eds) Biofilms in Human Diseases: Treatment and Control. Springer, Cham. https://doi.org/10.1007/978-3-030-30757-8_3

Download citation

Publish with us

Policies and ethics