Skip to main content

Introduction to Gas Hydrates

  • Chapter
  • First Online:
Chemical Additives for Gas Hydrates

Part of the book series: Green Energy and Technology ((GREEN))

Abstract

The increasing risk of gas hydrates in flow assurance, and its recent advances in the potential application of desalination, gas separation, transportation, and storage, demand new and much more efficient additives. The use of chemical additives to manage hydrate formation in flow assurance and promote hydrate application technologies is the best and practicable method. However, new additives are been developed to successful promote hydrate-based technologies in the near future. Herein, recent gas hydrate additives are comprehensively discussed, alongside their modelling successes. In this chapter, a brief background and general introduction to gas hydrate formation processes and structures are described. The challenges associated with gas hydrates, as well as their potential applications, are also explained. Recent gas hydrate experimental apparatus and procedures are also detailed in this chapter. In addition, a general description of gas hydrate thermodynamics and kinetic modes is also provided. Finally, this chapter provides the necessary fundamental information needed to understand the subsequent chapters.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Sloan ED, Koh CA (2007) Clathrate hydrates of natural gases, 3rd edn. CRC Press, Boca Raton, p 758

    Book  Google Scholar 

  2. Hammerschmidt EG (1934) Formation of gas hydrates in natural gas transmission lines. Ind Eng Chem 26:851–855

    Article  Google Scholar 

  3. Englezos P (1993) Clathrates hydrates. Ind Eng Chem Res 32:1251–1274

    Article  Google Scholar 

  4. Javanmardi J, Moshfeghian M (2003) Energy consumption and economic evaluation of water desalination by hydrate phenomenon. Appl Therm Eng 23:845–857

    Article  Google Scholar 

  5. Javanmardi J, Nasrifar K, Najibi SH, Moshfeghian M (2005) Economic evaluation of natural gas hydrate as an alternative for natural gas transportation. Appl Therm Eng 25:1708–1723

    Article  Google Scholar 

  6. Xu C-G, Li X-S (2015) Research progress on methane production from natural gas hydrates. RSC Adv 5:54672–54699

    Article  Google Scholar 

  7. Lang X, Fan S, Wang Y (2010) Intensification of methane and hydrogen storage in clathrate hydrate and future prospect. J Nat Gas Chem 19(3):203–209

    Article  Google Scholar 

  8. Li S, Fan S, Wang J et al (2009) CO2 capture from binary mixture via forming hydrate with the help of tetra-n-butyl ammonium bromide. J Nat Gas Chem 18:15–20

    Article  Google Scholar 

  9. Chun-Gang X, Xiao-Sen L (2014) Research progress of hydrate-based CO2 separation and capture from gas mixtures. RSC Adv 4:18301–18316

    Article  Google Scholar 

  10. Duc NH, Chauvy F, Herri JM (2007) CO2 capture by hydrate crystallization—a potential solution for gas emission of steelmaking industry. Energy Convers Manag 48:1313–1322

    Article  Google Scholar 

  11. Babu P, Linga P, Kumar R et al (2015) A review of the hydrate-based gas separation (HBGS) process for carbon dioxide pre-combustion capture. Energy 85:261–279

    Article  Google Scholar 

  12. Park S, Lee S, Lee Y et al (2013) CO2 capture from simulated fuel gas mixtures using semiclathrate hydrates formed by quaternary ammonium salts. Environ Sci Technol 47:7571–7577

    Article  Google Scholar 

  13. Mohammadi AH, Anderson R, Tohidi B (2005) Carbon monoxide clathrate hydrates: equilibrium data and thermodynamic modeling. AIChE J 51:2825–2833

    Article  Google Scholar 

  14. Li S, Fan S, Wang J (2010) Clathrate hydrate capture of CO2 from simulated flue gas with cyclopentane/water emulsion. Chin J Chem Eng 18:202–206

    Article  Google Scholar 

  15. Kim SM, Lee JD, Lee HJ et al (2011) Gas hydrate formation method to capture the carbon dioxide for pre-combustion process in IGCC plant. Int J Hydrogen Energy 36:1115–1121

    Article  Google Scholar 

  16. Ameripour S (2005) Prediction of gas-hydrate formation conditions in production and surface facilities. Doctoral dissertation, Texas A&M University

    Google Scholar 

  17. Harrison SE (2010) Natural gas hydrates. Stanford University, p 4

    Google Scholar 

  18. Obanijesu EO, Gubner R, Barifcani A et al (2014) The influence of corrosion inhibitors on hydrate formation temperature along the subsea natural gas pipelines. J Pet Sci Eng 120:239–252

    Article  Google Scholar 

  19. Koh CA, Sloan ED, Sum AK et al (2011) Fundamentals and applications of gas hydrates. Ann Rev Chem Biomol Eng 2:237–257

    Article  Google Scholar 

  20. Jeffrey GA (1984) Hydrate inclusion compounds. J Incl Phenom 1:211–222

    Article  Google Scholar 

  21. Jeffery GA (1972) Pentagonal dedecahedral water structure in crystalline hydrates. Mat Res Bull 7:1259–1270

    Article  Google Scholar 

  22. Ripmeester JA, Tse JS, Ratcliffe CI et al (1987) A new clathrate hydrate structure. Nature 325:135–136

    Article  Google Scholar 

  23. Partoon B, Wong NMS, Sabil KM et al (2013) A study on thermodynamics effect of [EMIM]-Cl and [OH-C2MIM]-Cl on methane hydrate equilibrium line. Fluid Phase Equilib 337:26–31

    Article  Google Scholar 

  24. Tariq M, Rooney D, Othman E et al (2014) Gas hydrate inhibition: a review of the role of ionic liquids. Ind Eng Chem Res 53:17855–17868

    Article  Google Scholar 

  25. Ke W, Svartaas TM, Chen D (2019) A review of gas hydrate nucleation theories and growth models. J Nat Gas Sci Eng 61:169–196

    Article  Google Scholar 

  26. Ranieri U, Koza MM, Kuhs WF et al (2017) Fast methane diffusion at the interface of two clathrate structures. Nat Commun 8:1–7

    Article  Google Scholar 

  27. Jacobson LC, Hujo W, Molinero V (2010) Amorphous precursors in the nucleation of clathrate hydrates. J Am Chem Soc 132:11806–11811

    Article  Google Scholar 

  28. Durham WB, Stern LA, Kirby SH (2003) Ductile flow of methane hydrate. Can J Phys 81:373–380

    Article  Google Scholar 

  29. Davidson DW, Handa YP, Ripmeester JA (1986) Xenon-129 NMR and the thermodynamic parameters of xenon hydrate. J Phys Chem 90:6549–6552

    Article  Google Scholar 

  30. Waite WF, Gilbert LY, Winters WJ et al (2005) Thermal conductivity of THF hydrate between −25 and +4 ℃, and their application to methane hydrate. In: Proceedings of fifth international conference on gas hydrates, pp 1724–1733

    Google Scholar 

  31. Christiansen RL, Sloan ED (1994) Mechanisms and kinetics of hydrate formation. Ann N Y Acad Sci 715:283–305

    Article  Google Scholar 

  32. Kashchiev D, Firoozabadi A (2002) Nucleation of gas hydrates. J Cryst Growth 243:476–489

    Article  Google Scholar 

  33. Li XS, Liu YJ, Zeng ZY et al (2011) Equilibrium hydrate formation conditions for the mixtures of methane + ionic liquids + water. J Chem Eng Data 56:119–123

    Article  Google Scholar 

  34. Boyun G, Shanhong S, Ghalambor A (2014) Offshore pipelines design, installation, and maintenance, 2nd edn. Elsevier, p 383

    Google Scholar 

  35. Xiao C, Adidharma H (2009) Dual function inhibitors for methane hydrate. Chem Eng Sci 64:1522–1527

    Article  Google Scholar 

  36. Sabil KM, Nashed O, Lal B et al (2015) Experimental investigation on the dissociation conditions of methane hydrate in the presence of imidazolium-based ionic liquids. Thermodyn J Chem 84:7–13

    Article  Google Scholar 

  37. Xiao C, Wibisono N, Adidharma H (2010) Dialkylimidazolium halide ionic liquids as dual function inhibitors for methane hydrate. Chem Eng Sci 65:3080–3087

    Article  Google Scholar 

  38. Bavoh CB, Partoon B, Lal B et al (2016) Effect of 1-ethyl-3-methylimidazolium chloride and polyvinylpyrrolidone on kinetics of carbon dioxide hydrates. Int J Appl Chem 12:6–11

    Google Scholar 

  39. Nashed O, Sabil KM, Lal B et al (2014) Study of 1-(2-hydroxyethyle) 3-methylimidazolium halide as thermodynamic inhibitors. Appl Mech Mater 625:337–340

    Article  Google Scholar 

  40. Nashed O, Dadebayev D, Khan MS et al (2018) Experimental and modelling studies on thermodynamic methane hydrate inhibition in the presence of ionic liquids. J Mol Liq 249:886–891

    Article  Google Scholar 

  41. Khan MS, Liew CS, Kurnia KA et al (2016) Application of COSMO-RS in investigating ionic liquid as thermodynamic hydrate inhibitor for methane hydrate. Procedia Eng 148:862–869

    Article  Google Scholar 

  42. Bavoh CB, Lal B, Khan MS et al (2018) Combined inhibition effect of 1-ethyl-3-methy-limidazolium chloride + glycine on methane hydrate. J Phys: Conf Ser 1123:012060

    Google Scholar 

  43. Bavoh CB, Lal B, Keong LK et al (2016) Synergic kinetic inhibition effect of EMIM-CL + PVP on CO2 hydrate formation. Procedia Eng 148:1232–1238

    Article  Google Scholar 

  44. Khan MS, Bavoh BC, Lal B et al (2018) Kinetic assessment of tetramethyl ammonium hydroxide (ionic liquid) for carbon dioxide, methane and binary mix gas hydrates. Recent Adv Ion Liq 9:159–179

    Google Scholar 

  45. Bavoh CB, Lal B, Nashed O et al (2016) COSMO-RS: an ionic liquid prescreening tool for gas hydrate mitigation. Chin J Chem Eng 11:1619–1624

    Article  Google Scholar 

  46. Sa J-H, Kwak G-H, Lee BR et al (2013) Hydrophobic amino acids as a new class of kinetic inhibitors for gas hydrate formation. Sci Rep 3:2428

    Article  Google Scholar 

  47. Bavoh CB, Partoon B, Lal B et al (2016) Methane hydrate-liquid-vapour-equilibrium phase condition measurements in the presence of natural amino acids. J Nat Gas Sci Eng 37:425–434

    Article  Google Scholar 

  48. Bavoh CB, Lal B, Osei H et al (2019) A review on the role of amino acids in gas hydrate inhibition, CO2 capture and sequestration, and natural gas storage. J Nat Gas Sci Eng 64:52–71

    Article  Google Scholar 

  49. Merey Ş (2017) Drilling of gas hydrate reservoirs. J Nat Gas Sci Eng 35:1167–1179

    Article  Google Scholar 

  50. Sami NA, Sangwai J, Subramanian B (2013) Gas hydrate applications and problems in oil and gas industry. Int J Sci Eng Res 4:1–5

    Google Scholar 

  51. Fan S, Li S, Wang J et al (2009) Efficient capture of CO2 from simulated flue gas by formation of TBAB or TBAF semiclathrate hydrates. Energy Fuels 23:4202–4208

    Article  Google Scholar 

  52. Partoon B, Sabil KM, Roslan H et al (2016) Impact of acetone on phase boundary of methane and carbon dioxide mixed hydrates. Fluid Phase Equilib 412:51–56

    Article  Google Scholar 

  53. Partoon B, Malik SNA, Azemi MH et al (2013) Experimental investigations on the potential of SDS as low-dosage promoter for carbon dioxide hydrate formation. Asia-Pac J Chem Eng 8:258–261

    Article  Google Scholar 

  54. Deschamps J, Dalmazzone D (2009) Dissociation enthalpies and phase equilibrium for TBAB semi-clathrate hydrates of N2, CO2, N2 + CO2 and CH4 + CO2. J Therm Anal Calorim 98:113–118

    Article  Google Scholar 

  55. Nashed O, Partoon B, Lal B et al (2018) Review the impact of nanoparticles on the thermodynamics and kinetics of gas hydrate formation. J Nat Gas Sci Eng 55:452–465

    Article  Google Scholar 

  56. Veluswamy HP, Kumar A, Seo Y et al (2018) A review of solidified natural gas (SNG) technology for gas storage via clathrate hydrates. Appl Energy 216:262–285

    Article  Google Scholar 

  57. Ganji H, Manteghian M, Rahimi Mofrad H (2007) Effect of mixed compounds on methane hydrate formation and dissociation rates and storage capacity. Fuel Process Technol 88:891–895

    Article  Google Scholar 

  58. Darbouret M, Cournil M, Herri J-M (2005) Rheological study of TBAB hydrate slurries as secondary two-phase refrigerants. Int J Refrig 28:663–671

    Article  Google Scholar 

  59. Sabil KM, Witkamp G-J, Peters CJ (2010) Estimations of enthalpies of dissociation of simple and mixed carbon dioxide hydrates from phase equilibrium data. Fluid Phase Equilib 290:109–114

    Article  Google Scholar 

  60. Linga P, Babu P, Nambiar AP (2018) A clathrate hydrate desalination method. WO/2018/156083

    Google Scholar 

  61. Nambiar A, Babu P, Linga P (2019) Improved kinetics and water recovery with propane as co-guest gas on the hydrate-based desalination (hydesal) process. Chem Eng 3:31

    Google Scholar 

  62. Mannar N, Bavoh CB, Baharudin AH et al (2017) Thermophysical properties of aqueous lysine and its inhibition influence on methane and carbon dioxide hydrate phase boundary condition. Fluid Phase Equilib 454:57–63

    Article  Google Scholar 

  63. Bavoh CB, Partoon B, Lal B et al (2017) Inhibition effect of amino acids on carbon dioxide hydrate. Chem Eng Sci 171:331–339

    Article  Google Scholar 

  64. Khan MSMS, Bavoh CB, Partoon B et al (2017) Thermodynamic effect of ammonium based ionic liquids on CO2 hydrates phase boundary. J Mol Liq 238:533–539

    Article  Google Scholar 

  65. Trueba AT, Radović IR, Zevenbergen JF et al (2012) Kinetics measurements and in situ Raman spectroscopy of formation of hydrogen-tetrabutylammonium bromide semi-hydrates. Int J Hydrogen Energy 37:5790–5797

    Article  Google Scholar 

  66. Khan MSMS, Partoon B, Bavoh CB et al (2017) Influence of tetramethylammonium hydroxide on methane and carbon dioxide gas hydrate phase equilibrium conditions. Fluid Phase Equilib 440:1–8

    Article  Google Scholar 

  67. Mohammadi AH, Richon D (2010) Gas hydrate phase equilibrium in the presence of ethylene glycol or methanol aqueous solution. Ind Eng Chem Res 49:8865–8869

    Article  Google Scholar 

  68. Odutola TO, Ajienka JA, Onyekonwu MO et al (2016) Hydrate Inhibition in laboratory flow loop using polyvinylpyrrolidone, N-Vinylcaprolactam and 2-(Dimethylamino)ethylmethacrylate. J Nat Gas Sci Eng 36:54–61

    Article  Google Scholar 

  69. Talaghat MR (2014) Experimental investigation of induction time for double gas hydrate formation in the simultaneous presence of the PVP and l-Tyrosine as kinetic inhibitors in a mini flow loop apparatus. J Nat Gas Sci Eng 19:215–220

    Article  Google Scholar 

  70. Sowa B, Zhang XH, Hartley PG et al (2014) Formation of Ice, tetrahydrofuran hydrate, and methane/propane mixed gas hydrates in strong monovalent salt solutions. Energy Fuels 11:6877–6888

    Article  Google Scholar 

  71. Tohidi B, Burgass RW, Danesh A et al (2000) Improving the accuracy of gas hydrate dissociation point measurements. Gas Hydrates Chall Futur 912:924–931

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bavoh, C.B., Lal, B., Keong, L.K. (2020). Introduction to Gas Hydrates. In: Chemical Additives for Gas Hydrates. Green Energy and Technology. Springer, Cham. https://doi.org/10.1007/978-3-030-30750-9_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-30750-9_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-30749-3

  • Online ISBN: 978-3-030-30750-9

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics