Skip to main content

Fungal Polyketides: Chemical Diversity and Their Cytotoxic Effects

  • Chapter
  • First Online:
Biodiversity and Chemotaxonomy

Part of the book series: Sustainable Development and Biodiversity ((SDEB,volume 24))

  • 549 Accesses

Abstract

Compounds isolated from different natural sources have over the years played crucial roles in the treatment of a wide range of human diseases. Over the past six decades, microorganisms have provided valuable active compounds for the treatment of various diseases. Fungi, in general, produce diverse structural classes of natural products including polyketides, a major class of secondary metabolites obtained from various natural sources‚ which as a group have interesting chemical diversity. In addition, polyketides are known to possess a number of biological and pharmacological effects, viz. cytotoxic, antibacterial, antifungal, antiparasitic, and immunosuppressive effects. In this chapter the focus is on describing the cytotoxic effects of polyketides isolated from fungi and in particular their potential as cancerostatic pharmaceuticals.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Agatsuma T, Akama T, Nara S, Matsumiya S, Nakai R, Ogawa H, Otaki S, Ikeda SI, Saitoh Y, Kanda Y (2002) UCS1025A and B, new antitumor antibiotics from the fungus Acremonium species. Org Lett 4:4387–4390

    Article  CAS  PubMed  Google Scholar 

  • Al-Said MS, El-Khawaja SM, El-Feraly FS, Hufford CD (1990) 9-Deoxy drimane sesquiterpenes from Canella winterana. Phytochemistry 29:975–977

    Article  CAS  Google Scholar 

  • Belofsky GN, Jensen PR, Renner MK, Fenical W (1998) New cytotoxic sesquiterpenoid nitrobenzoyl esters from a marine isolate of the fungus Aspergillus versicolor. Tetrahedron 54:1715–1724

    Article  CAS  Google Scholar 

  • Bünger J, Westphal G, Mönnich A, Hinnendahl B, Hallier E, Müller M (2004) Cytotoxicity of occupationally and environmentally relevant mycotoxins. Toxicology 202:199–211

    Article  PubMed  CAS  Google Scholar 

  • Cabrera GM, Roberti MJ, Wright JE, Seldes AM (2002) Cryptoporic and isocryptoporic acids from the fungal cultures of Polyporus arcularius and P. ciliatus. Phytochemistry 61:189–193

    Article  CAS  PubMed  Google Scholar 

  • Cai P, McPhail AT, Krainer E, Katz B, Pearce C, Boros C, Caceres B, Smith D, Houck DR (1999) Mycoepoxydiene represents a novel class of fungal metabolites. Tetrahedron Lett 1479–1482

    Article  CAS  Google Scholar 

  • Cai S, King JB, Du L, Powell DR, Cichewicz RH (2014) Bioactive sulfur-containing sulochrin dimers and other metabolites from an Alternaria sp. isolate from a Hawaiian soil sample. J Nat Prod 77:2280–2287

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen C, Zhu H, Wang J, Yang J, Li XN, Wang J, Chen K, Wang Y, Luo Z, Yao G, Xue Y (2015) Armochaetoglobins K-R, anti-HIV pyrrole-based cytochalasans from Chaetomium globosum TW1-1. Eur J Org Chem 2015:3086–3094

    Article  CAS  Google Scholar 

  • Chinworrungsee M, Wiyakrutta S, Sriubolmas N, Chuailua P, Suksamrarn A (2008) Cytotoxic activities of trichothecenes isolated from an endophytic fungus belonging to order Hypocreales. Archi Pharmacal Res 31:611–616

    Article  CAS  Google Scholar 

  • Christian OE, Compton J, Christian KR, Mooberry SL, Valeriote FA, Crews P (2005) Using jasplakinolide to turn on pathways that enable the isolation of new chaetoglobosins from Phomospis asparagi. J Nat Prod 68:1592–1597

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cimmino A, Andolfi A, Berestetskiy A, Evidente A (2008) Production of phytotoxins by Phoma exigua var. exigua, a potential mycoherbicide against perennial thistles. J Agric Food Chem 56:6304–6309

    Article  CAS  PubMed  Google Scholar 

  • Demain AL, Sanchez S (2009) Microbial drug discovery: 80 years of progress. J Antibiot 62:5–16

    Article  CAS  Google Scholar 

  • Demain AL, Vaishnav P (2011) Natural products for cancer chemotherapy. Microbial Biotechnol 4:687–699

    Article  Google Scholar 

  • Devkota KP, Covell D, Ransom T, McMahon JB, Beutler JA (2013) Growth inhibition of human colon carcinoma cells by sesquiterpenoids and tetralones of Zygogynum calothyrsum. J Nat Prod 76:710–714

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ding G, Song YC, Chen JR, Xu C, Ge HM, Wang XT, Tan RX (2006) Chaetoglobosin U, a cytochalasan alkaloid from endophytic Chaetomium globosum IFB-E019. J Nat Prod 69:302–304

    Article  CAS  PubMed  Google Scholar 

  • Ding G, Zheng Z, Liu S, Zhang H, Guo L, Che Y (2009) Photinides A–F, cytotoxic benzofuranone-derived γ-Lactones from the plant endophytic fungus Pestalotiopsis photiniae. J Nat Prod 72:942–945

    Article  CAS  PubMed  Google Scholar 

  • Dou H, Song YX, Liu XQ, Gong W, Li EG, Tan RX, Hou YY (2011) Chaetoglobosin Fex from the marine-derived endophytic fungus inhibits induction of inflammatory mediators via toll-like receptor 4 signaling in macrophages. Biol Pharm Bull 34:1864–1873

    Article  CAS  PubMed  Google Scholar 

  • Donoso R, Rivera-sagredo A, Hueso-rodriguez JA, Elson SW (1997) A new chaetoglobosin isolated from a fungus of the genus Discosia. Nat Prod Lett 10:49–54

    Article  CAS  Google Scholar 

  • Du L, Zhu T, Liu H, Fang Y, Zhu W, Gu Q (2008) Cytotoxic polyketides from a marine-derived fungus Aspergillus glaucus. J Nat Prod 71:1837–1842

    Article  CAS  PubMed  Google Scholar 

  • Erkel G, Lorenzen K, Anke T, Velten R, Gimenez A, Steglich W (1995) Kuehneromycins A and B, two new biological active compounds from a Tasmanian kuehneromyces sp. (Strophariaceae. Basidiomycetes Z Naturforsch C Biosci 50:1–10

    Article  CAS  Google Scholar 

  • El-Elimat T, Figueroa M, Raja HA, Graf TN, Swanson SM, Falkinham JO, Wani MC, Pearce CJ, Oberlies NH (2015) Biosynthetically distinct cytotoxic polyketides from Setophoma terrestris. Eur J Org Chem 2015:109–2021

    Article  CAS  Google Scholar 

  • Evidente A, Kornienko A, Cimmino A, Andolfi A, Lefranc F, Mathieu V, Kiss R (2014) Fungal metabolites with anticancer activity. Nat Prod Rep 31:617–627

    Article  CAS  PubMed  Google Scholar 

  • Fang LZ, Qing C, Shao HJ, Yang YD, Dong ZJ, Wang F, Zhao W, Yang WQ, Liu JK (2006) Hypocrellin D, a cytotoxic fungal pigment from fruiting bodies of the ascomycete Shiraia bambusicola. J Antibiot 59:351–354

    Article  CAS  Google Scholar 

  • Fleming A (1929) On the antibacterial action of cultures of Penicillium, with special reference to their use in the isolation of B. influenzae. Br J Exp Pathol 10:226–236

    CAS  PubMed Central  Google Scholar 

  • Gao H, Zhou L, Li D, Gu Q, Zhu TJ (2013) New cytotoxic metabolites from the marine-derived fungus Penicillium sp. ZLN29. Helv Chim Acta 96:514–519

    Article  CAS  Google Scholar 

  • Garlaschelli L, Mellerio G, Vidari G, Vita-Finzi P (1994) New fatty acid esters of drimane sesquiterpenes from Lactarius uvidus. J Nat Prod 57:905–910

    Article  CAS  PubMed  Google Scholar 

  • Grabley S, Thiericke R, Zerlin M, GÖHRT A, Philipps S, Zeeck A (1996) New albrassitriols from Aspergillus sp. (FH-A 6357). J Antibiot 49:593–595

    Article  CAS  PubMed  Google Scholar 

  • Hayes MA, Wrigley SK, Chetland I, Reynolds EE, Ainsworth AM, Renno DV, Latif MA, Cheng XM, Hupe DJ, Charlton P, Doherty AM (1996) Novel drimane sesquiterpene esters from Aspergillus ustus var. pseudodeflectus with endothelin receptor binding activity. J Antibiot 49:505–512

    Article  CAS  Google Scholar 

  • Hammerschmidt L, Debbab A, Ngoc TD, Wray V, Hemphil CP, Lin W, Broetz-Oesterhelt H, Kassack MU, Proksch P, Aly AH (2014) Polyketides from the mangrove-derived endophytic fungus Acremonium strictum. Tetrahedron Lett 55:3463–3468

    Article  CAS  Google Scholar 

  • He H, Yang HY, Bigelis R, Solum EH, Greenstein M, Carter GT (2002) Pyrrocidines A and B, new antibiotics produced by a filamentous fungus. Tetrahedron Lett 43(9):1633–1636

    Article  CAS  Google Scholar 

  • Hewage RT, Aree T, Mahidol C, Ruchirawat S, Kittakoop P (2014) One strain-many compounds (OSMAC) method for production of polyketides, azaphilones, and an isochromanone using the endophytic fungus Dothideomycete sp. Phytochemistry 108:87–94

    Article  CAS  PubMed  Google Scholar 

  • Hibbett DS, Ohman A, Glotzer D, Nuhn M, Kirk P, Nilsson RH (2011) Progress in molecular and morphological taxon discovery in Fungi and options for formal classification of environmental sequences. Fungal Biol Rev 25:35–47

    Article  Google Scholar 

  • Hussain H, Al-Sadi AM, Schulz B, Steinert M, Khan A, Green IR, Ahmed I (2017) A fruitful decade for fungal polyketides from 2007 to 2016: antimicrobial activity, chemotaxonomy and chemodiversity. Fut Med Chem 9:1631–1648

    Article  CAS  Google Scholar 

  • Hu Y, Hao X, Chen L, Akhberdi O, Yu X, Liu Y, Zhu X (2018) Gα-cAMP/PKA pathway positively regulates pigmentation, chaetoglobosin A biosynthesis and sexual development in Chaetomium globosum. PLoS ONE 13:e0195553

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ichihara A, Katayama K, Teshima H, Oikawa H, Sakamura S (1996) Chaetoglobosin O and other phytotoxic metabolites from Cylindrocladium floridanum, a causal fungus of Alfalfa black rot disease. Biosci Biotechnol Biochem 60:360–361

    Article  CAS  PubMed  Google Scholar 

  • Igarashi Y, Miura SS, Fujita T, Furumai T (2006) Pterocidin, a Cytotoxic Compound from the Endophytic Streptomyces hygroscopicus. J Antibiot 59:193–195

    Article  CAS  Google Scholar 

  • Iwamoto C, Yamada T, Ito Y, Minoura K, Numata A (2001) Cytotoxic cytochalasans from a Penicillium species separated from a marine alga. Tetrahedron 57:2997–3004

    Article  CAS  Google Scholar 

  • Isaka M, Yangchum A, Intamas S, Kocharin K, Jones EG, Kongsaeree P, Prabpai S (2009) Aigialomycins and related polyketide metabolites from the mangrove fungus Aigialus parvus BCC 5311. Tetrahedron 65:4396–4403

    Article  CAS  Google Scholar 

  • Jiao W, Feng Y, Blunt JW, Cole AL, Munro MH (2004) Chaetoglobosins Q, R, and T, three further new metabolites from Chaetomiumg lobosum. J Nat Prod 67:1722–1725

    Article  CAS  PubMed  Google Scholar 

  • Kasai Y, Komatsu K, Shigemori H, Tsuda M, Mikami Y, Kobayashi JI (2005) Cladionol A, a polyketide glycoside from marine-derived fungus Gliocladium species. J Nat Prod 68:777–779

    Article  CAS  PubMed  Google Scholar 

  • Kikuchi H, Isobe M, Kurata S, Katou Y, Oshima Y (2012) New dimeric and monomeric chromanones, gonytolides D-G, isolated from the fungus Gonytrichum sp. Tetrahedron 68:6218–6223

    Article  CAS  Google Scholar 

  • Kralj A, Kehraus S, Krick A, Eguereva E, Kelter G, Maurer M, Wortmann A, Fiebig HH, Koenig GM (2006) Arugosins G and H: Prenylated polyketides from the marine-derived fungus Emericella nidulans var. acristata. J Nat Prod 69:995–1000

    Article  CAS  PubMed  Google Scholar 

  • Kohno J, Nishio M, Sakurai M, Kawano K, Hiramatsu H, Kameda N, Kishi N, Yamashita T, Okuda T, Komatsubara S (1999) Isolation and structure determination of TMC-151s: novel polyketide antibiotics from Gliocladium catenulatum Gilman & Abbott TC 1280. Tetrahedron 55:7771–7786

    Article  CAS  Google Scholar 

  • Kono K, Tanaka M, Ogita T, Hosoya T, Kohama T (2000) F-12509A, a new sphingosine kinase inhibitor, produced by a discomycete. J Antibiot 53:459–466

    Article  CAS  Google Scholar 

  • Kioy D, Gray AI, Waterman PG (1990a) A comparative study of the stem-bark drimane sesquiterpenes and leaf volatile oils of Warburgia ugandensis and W. stuhlmannii. Phytochemistry 29:3535–3538

    Article  CAS  Google Scholar 

  • Kioy D, Gray AI, Waterman PG (1990b) 3β, 9α-Dihydroxycinnamolide: A further novel drimane sesquiterpene from the stem bark of Canella winterana. J Nat Prod 53:1372–1373

    Article  CAS  Google Scholar 

  • Kumaran RS, Kim HJ, Hur B-K (2010) Taxol promising fungal endophyte, Pestalotiopsis spp. from Taxus cuspidata. J Biosci Bioeng 110:541–546

    Article  CAS  PubMed  Google Scholar 

  • Lee YM, Li H, Hong J, Cho HY, Bae KS, Kim MA, Kim DK, Jung JH (2010) Bioactive metabolites from the sponge-derived fungus Aspergillus versicolor. Arch Pharm Res 33:231–235

    Article  CAS  PubMed  Google Scholar 

  • Li H, Xiao J, Gao YQ, Tang JJ, Zhang AL, Gao JM (2014) Chaetoglobosins from Chaetomium globosum, an endophytic fungus in Ginkgo biloba, and their phytotoxic and cytotoxic activities. J Agric Food Chem 62:3734–3741

    Article  CAS  PubMed  Google Scholar 

  • Li D, Chen L, Zhu T, Kurtán T, Mándi A, Zhao Z, Li J, Gu Q (2011) Chloctanspirones A and B, novel chlorinated polyketides with an unprecedented skeleton, from marine sediment derived fungus Penicillium terrestre. Tetrahedron 67:7913–7918

    Article  CAS  Google Scholar 

  • Lin X, Huang Y, Fang M, Wang J, Zheng Z, Su W (2005) Cytotoxic and antimicrobial metabolites from marine lignicolous fungi, Diaporthe sp. FEMS Microbiol Lett 251:53–58

    Article  CAS  PubMed  Google Scholar 

  • Lin Z, Zhu T, Fang Y, Gu Q, Zhu W (2008) Polyketides from Penicillium sp. JP-1, an endophytic fungus associated with the mangrove plant Aegiceras corniculatum. Phytochemistry 69:1273–1278

    Article  CAS  PubMed  Google Scholar 

  • Liao WY, Shen CN, Lin LH, Yang YL, Han HY, Chen JW, Kuo SC, Wu SH, Liaw CC (2012) Asperjinone, a nor-neolignan, and terrein, a suppressor of ABCG2-expressing breast cancer cells, from thermophilic Aspergillus terreus. J Nat Prod 75:630–635

    Article  CAS  PubMed  Google Scholar 

  • Lorenzen K, Anke T, Anders U, Hindermayr H, Hansske F (1994) Two inhibitors of platelet aggregation from a Panus species (Basidiomycetes). Z Naturforsch C Biosci 49:132–138

    Article  CAS  Google Scholar 

  • Mahmoud II, Kinghorn AD, Cordell GA, Farnsworth NR (1979) Cytotoxic drimane sesquiterpenoids from Capsicodendron dinisii. J Nat Prod 42(6):681

    Google Scholar 

  • Masters K, Braese S (2012) Xanthones from fungi, lichens, and bacteria: The natural products and their synthesis. Chem Rev 112:3717–3776

    Article  CAS  PubMed  Google Scholar 

  • Mohamed IE, Gross H, Pontius A, Kehraus S, Krick A, Kelter G, Maier A, Fiebig HH, König GM (2009) Epoxyphomalin A and B, prenylated polyketides with potent cytotoxicity from the marine-derived fungus Phoma sp. Org Lett 11:5014–5017

    Article  CAS  PubMed  Google Scholar 

  • Mulrooney CA, O’Brien EM, Morgan BJ, Kozlowski MC (2012) Perylenequinones: isolation, synthesis, and biological activity. Eur J Org Chem 2012:3887–3904

    Article  CAS  Google Scholar 

  • McCorkindale NJ, Calzadilla CH, Hutchinson SA, Kitson DH, Ferguson G, Campbell IM (1981) The structure and chemistry of pebrolide, desacetylpebrolide and 1-deoxypebrolide, sesquiterpene benzoates from Penicillium brevicompactum. Tetrahedron 37(3):649–653

    Article  CAS  Google Scholar 

  • Mashimbye MJ, Maumela MC, Drewes SE (1999) A drimane sesquiterpenoid lactone from Warburgia salutaris. Phytochemistry 51:435–438

    Article  CAS  Google Scholar 

  • Mitova MI, Lang G, Blunt JW, Cummings NJ, Cole AL, Robinson WT, Munro MH (2006) Cladobotric Acids A–F: New cytotoxic polyketides from a New Zealand Cladobotryum sp. J Org Chem 71:492–497

    Article  CAS  PubMed  Google Scholar 

  • Mohr, K. I. (2016) History of antibiotics research. In: Stadler M, Dersch P (2016) How to overcome the antibiotic crisis. Current topics in microbiology and immunology, vol 398, pp 237–272. Springer International Publishing AG

    Google Scholar 

  • Nakai R, Ogawa H, Asai A, Ando K, Agaisuma T, Maisumiya S, Akinaga S, Yamashita Y, Mizukami T (2000) UCS1025A, a novel antibiotic produced by Acremonium sp. J Antibiot 53:294–296

    Article  CAS  Google Scholar 

  • Newman DJ, Cragg GM (2012) Natural products as sources of new drugs over the 30 years from 1981 to 2010. J Nat Prod 75:311–335

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nozawa O, Okazaki T, Sakai N, Komurasaki T, Hanada K, Morimoto S, Zx Chen, Bm He, Mizoue K (1995) A novel bioactive δ lactone FD-211. J Antibiot 48:113–118

    Article  CAS  Google Scholar 

  • Nozawa O, Okazaki T, Morimoto S, Chen ZX, He BM, Mizoue K (2000) Waol B, a new trihydrofuran derivative with cytocidal activity, isolated from Myceliophthora lutea. J Antibiot 53:1296–1300

    Article  CAS  PubMed  Google Scholar 

  • Numafa A, Takahashi C, Ito Y, Minoura K, Yamada T, Matsuda C, Nomoto K (1996) Penochalasins, a novel class of cytotoxic cytochalasans from a Penicillium species separated from a marine alga: Structure determination and solution conformation. J Chem Soc Perkin Trans 1:239–245

    Google Scholar 

  • Osterhage C, Kaminsky R, König GM, Wright AD (2000) Ascosalipyrrolidinone a, an antimicrobial alkaloid, from the obligate marine fungus Ascochyta s alicorniae. J Org Chem 65:6412–6417

    Article  CAS  PubMed  Google Scholar 

  • Paul A, Thapa G, Basu A, Mazumdar P, Kalita MC, Sahoo L (2010) Rapid plant regeneration, analysis of genetic fidelity and essential aromatic oil content of micropropagated plants of Patchouli, Pogostemon cablin (Blanco) Benth.—An industrially important aromatic plant. Ind Crop Prod 32:366–374

    Article  CAS  Google Scholar 

  • Pongcharoen W, Rukachaisirikul V, Phongpaichit S, Rungjindamai N, Sakayaroj J (2006) Pimarane diterpene and cytochalasin Derivatives from the endophytic fungus Eutypella scoparia PSU-D44. J Nat Prod 69:856–858

    Article  CAS  PubMed  Google Scholar 

  • Pulici M, Sugawara F, Koshino H, Uzawa J, Yoshida S, Lobkovsky E, Clardy J (1996) A new iso drimeninol from Pestalotiopsis sp. J Nat Prod 59:47–48

    Google Scholar 

  • Pulici M, Sugawara F, Koshino H, Okada G, Esumi Y, Uzawa J, Yoshida S (1997) Metabolites of Pestalotiopsis spp., endophytic fungi of Taxus brevifolia. Phytochemistry 46(2):313–319

    Article  CAS  Google Scholar 

  • Prachya S, Wiyakrutta S, Sriubolmas N, Ngamrojanavanich N, Mahidol C, Ruchirawat S, Kittakoop P (2007) Cytotoxic mycoepoxydiene derivatives from an endophytic fungus Phomopsis sp. isolated from Hydnocarpus anthelminthicus. Planta Med 73:1418–1420

    Article  CAS  PubMed  Google Scholar 

  • Rahbæk L, Christophersen C, Frisvad J, Bengaard HS, Larsen S, Rassing BR (1997) Insulicolide A: a new nitrobenzoyloxy-substituted sesquiterpene from the marine fungus Aspergillus insulicola. J Nat Prod 60:811–813

    Article  Google Scholar 

  • Rajab MS, Ndegwa JM (2000) 11α-Hydroxy muzigadiolide, a novel drimane sesquiterpene from the stem bark of Warburgia ugandensis. Bull Chem Soc Ethiop 14:45

    Google Scholar 

  • Rastogi N, Abaul J, Goh KS, Devallois A, Philogène E, Bourgeois P (1998) Antimycobacterial activity of chemically defined natural substances from the Caribbean flora in Guadeloupe. FEMS Immunol Med Microbiol 20:267–273

    Article  CAS  Google Scholar 

  • Scherlach K, Boettger D, Remme N, Hertweck C (2010) The chemistry and biology of cytochalasans. Nat Prod Rep 27:869–886

    Article  CAS  PubMed  Google Scholar 

  • Schümann J, Hertweck C (2007) Molecular basis of cytochalasan biosynthesis in fungi: gene cluster analysis and evidence for the involvement of a PKS-NRPS hybrid synthase by RNA silencing. J Am Chem Soc 129:9564–9565

    Article  PubMed  CAS  Google Scholar 

  • Seeram NP, Francis LS, Needham OL, Jacobs H, McLean S, Reynolds WF (2003) Drimane and bisabolane sesquiterpenoids from Cinnamodendron corticosum (Canellaceae). Biochem Syst Ecol 6:637–640

    Article  CAS  Google Scholar 

  • Sekita S, Yoshihira K, Natori S, Kuwano H (1977) Chaetoglobosins G, and J, cytotoxic indol-3-yl [13]-cytochalasans from Chaetomium globosum. Tetrahedron Lett 32:2771–2774

    Article  Google Scholar 

  • Sekita S, Yoshihira K, Natori S, Kuwano H (1982) Chaetoglobosins, cytotoxic 10-(indol-3-yl)-[13]cytochalasans from Chaetomium spp. III. Sructures of chaetoglobosins C, E, F, G. J Chem Pharm Bull 30:1629–1638

    Article  CAS  Google Scholar 

  • Sekita S, Yoshihira K, Natori S, Kuwano H (1973) Structures of chaetoglobosin A and B, cytotoxic metabolites of Chaetomium globosum. Tetrahedron Lett 14:2109–2112

    Article  Google Scholar 

  • Sekita S, Yoshihira K, Natori S (1983) Chaetoglobosins, cytotoxic 10-(indol-3-yl)-[13] cytochalasans from Chaetomium spp. IV. 13C-nuclear magnetic resonance spectra and their application to a biosynthetic study. Chem Pharm Bull 31:490–498

    Article  CAS  Google Scholar 

  • Silva CA, Madureira LA (2012) Source correlation of biomarkers in a mangrove ecosystem on Santa Catarina Island in southern Brazil. An Acad Bras Ciênc 84:589–604

    Article  CAS  PubMed  Google Scholar 

  • Springer JP, Cox RH, Cutler HG, Crumley FG (1980) The structure of chaetoglobosin K. Tetrahedron Lett 21:1905–1908

    Article  CAS  Google Scholar 

  • Singh SB, Goetz MA, Jones ET, Bills GF, Giacobbe RA, Herranz L, Stevens-Miles S, Williams DL (1995) Oteromycin: a novel antagonist of endothelin receptor. J Org Chem 60:7040–7042

    Article  CAS  Google Scholar 

  • Staunton J, Weissman KJ (2001) Polyketide biosynthesis: a millennium review. Nat Prod Rep 18:380–416

    Article  CAS  PubMed  Google Scholar 

  • Suzuki S, Hosoe T, Nozawa K, Kawai KI, Yaguchi T, Udagawa SI (2000) Antifungal substances against pathogenic fungi, talaroconvolutins, from Talaromyces convolutus. J Nat Prod 63:768–772

    Article  CAS  PubMed  Google Scholar 

  • Tabata N, Ohyama Y, Tomoda H, Abe T, Namikoshi M, Omura S (1999) Structure Elucidation of Roselipins, Inhibitors of Diacylglycerol Acyltransferase Produced by Gliodadium roseum KF-1040. J Antibiot 52:815–826

    Article  CAS  Google Scholar 

  • Takahashi C, Yoshihira K, Natori S, Umeda M (1976) The structures of toxic metabolites of Aspergillus candidus. I. The compounds A and E, cytotoxic p-terphenyls. Chem Pharm Bull 24:613–620

    Article  CAS  Google Scholar 

  • Thohinung S, Kanokmedhakul S, Kanokmedhakul K, Kukongviriyapan V, Tusskorn O, Soytong K (2010) Cytotoxic 10-(indol-3-yl)-[13] cytochalasans from the fungus Chaetomium elatum ChE01. Arch. Pharm. Res. 33(8):1135–1141

    Article  CAS  PubMed  Google Scholar 

  • Tomoda H, Ohyama Y, Abe T, Tabata N, Namikoshi M, Yamaguchi Y, Masuma R, Omura S (1999) Roselipins, inhibitors of diacylglycerol acyltransferase, produced by Gliocladium roseum KF-1040. J Antibiot 52:689–694

    Article  CAS  Google Scholar 

  • Umeda M, Ohtsubo K, Saito M, Sekita S, Yoshihira K, Natori S, Udagawa S, Sakabe F, Kurata H (1975) Cytotoxicity of new cytochalasans from Chaetomium globosum. Experientia 31:435–438

    Article  CAS  PubMed  Google Scholar 

  • Uosaki Y, Yoshida M, Ogawa T, Saitoh Y (1996) RES-1149-1 and-2, novel non-peptidic endothelin type b receptor antagonists produced by Aspergillm sp. J Antibiot 49:6–12

    Article  CAS  Google Scholar 

  • Velten R, Klostermeyer D, Steffan B, Steglich W, Kuschel A, Anke T (1994) The mniopetals, new inhibitors of reverse transcriptases from a Mniopetalum species (Basidiomycetes). J Antibiot 47:1017–1024

    Article  CAS  Google Scholar 

  • von Wallbrunn C, Luftmann H, Bergander K, Meinhardt F (2001) Phytotoxic chaetoglobosins are produced by the plant pathogen Calonectria morganii (anamorph Cylindrocladium scoparium). J Gen Appl Microbiol 47:33–38

    Article  Google Scholar 

  • Wang J, Huang Y, Fang M, Zhang Y, Zheng Z, Zhao Y, Su W (2002) Brefeldin A, a cytotoxin produced by Paecilomyces sp. and Aspergillus clavatus isolated from Taxus mairei and Torreya grandis. FEMS Imunol Med Mic 34:51–57

    Article  CAS  Google Scholar 

  • Wang CCC, Chiang YM, Kuo PL, Chang JK, Hsu YL (2008) Norsolorinic acid inhibits proliferation of T24 human bladder cancer cells by arresting the cell cycle at the G0/G1 phase and inducing a Fas/membrane-bound Fas ligand-mediated apoptotic pathway. Clini Exp Pharmacol Physiol 35:1301–1308

    Article  CAS  Google Scholar 

  • Weissman KJ, Leadlay PF (2005) Combinatorial biosynthesis of reduced polyketides. Nat Rev Microbiol 3:925–936

    Article  CAS  PubMed  Google Scholar 

  • Wezeman T, Bräse S, Masters KS (2015) Xanthone dimers: a compound family which is both common and privileged. Nat Prod Rep 32:6–28

    Article  CAS  PubMed  Google Scholar 

  • Wu G, Yu G, Kurtán T, Mándi A, Peng J, Mo X, Liu M, Li H, Sun X, Li J, Zhu T, Gu Q, Li D (2015) Versixanthones A–F, cytotoxic xanthone–chromanone dimers from the marine-derived fungus Aspergillus versicolor HDN1009. J Nat Prod 78:2691–2698

    Article  CAS  PubMed  Google Scholar 

  • Yang YL, Lu CP, Chen MY, Chen KY, Wu YC, Wu SH (2007) Cytotoxic polyketides containing tetramic acid moieties isolated from the fungus Myceliophthora thermophila: elucidation of the relationship between cytotoxicity and stereoconfiguration. Chem Eur J 13:6985–6991

    Article  CAS  PubMed  Google Scholar 

  • Yao Q, Wang J, Zhang X, Nong X, Xu X, Qi S (2014) Cytotoxic polyketides from the deep-sea-derived fungus Engyodontium album DFFSCS021. Mar Drugs 12:5902–5915

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ying BP, Peiser GD, Ji YY, Mathias KM, Karasina F, Hwang YS (1995a) Structure-activity relationships of phytotoxic sesquiterpenoids from Canella winterana. J Agric Food Chem 43:826–829

    Article  CAS  Google Scholar 

  • Ying BP, Peiser G, Ji YY, Mathias K, Tutko D, Hwang YS (1995b) Phytotoxic sesquiterpenoids from Canella winterana. Phytochemistry 38:909–915

    Article  CAS  Google Scholar 

  • Zhang Y, Tian R, Liu S, Chen X, Liu X, Che Y (2008a) Alachalasins A-G, new cytochalasins from the fungus Stachybotrys charatum. Bioorg Med Chem 16:2627–2634

    Article  CAS  PubMed  Google Scholar 

  • Zhang W, Krohn K, Flörke U, Pescitelli G, Di Bari L, Antus S, Kurtán T, Rheinheimer J, Draeger S, Schulz B (2008b) New mono‐and dimeric members of the Secalonic acid family: Blennolides A–G isolated from the fungus Blennoria sp. Chem Eur J 14:4913–4923

    Article  CAS  PubMed  Google Scholar 

  • Zhang J, Ge HM, Jiao RH, Li J, Peng H, Wang YR, Wu JH, Song YC, Tan RX (2010) Cytotoxic chaetoglobosins from the endophyte Chaetomium globosum. Planta Med 76:1910–1914

    Article  CAS  PubMed  Google Scholar 

  • Zhang Q, Li HQ, Zong SC, Gao JM, Zhang AL (2012) Chemical and bioactive diversities of the genus Chaetomium secondary metabolites. Mini-Rev Med Chem 12:127–148

    Article  PubMed  Google Scholar 

  • Zhang D, Ge H, Xie D, Chen R, Zou JH, Tao X, Dai J (2013a) Periconiasins A-C, new cytotoxic cytochalasans with an unprecedented 9/6/5 tricyclic ring system from endophytic fungus Periconia sp. Org Lett 15:1674–1677

    Article  CAS  PubMed  Google Scholar 

  • Zhang GZ, Wang FT, Qin JC, Wang D, Zhang JY, Zhang YH, Zhang SH, Pan HY (2013b) Efficacy assessment of antifungal metabolites from Chaetomium globosum No. 05, a new biocontrol agent, against Setosphaeria turcica. Biol Control 64:90–98

    Article  CAS  Google Scholar 

  • Zheng QC, Kong MZ, Zhao Q, Chen GD, Tian HY, Li XX, Guo LD, Li J, Zheng YZ, Gao H (2014) Chaetoglobosin Y, a new cytochalasan from Chaetomium globosum. Fitoterapia 93:126–131

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The author (HH) thanks the Alexander von Humboldt Foundation for its generous support in providing the opportunity to do work in Germany, which facilitated the writing of this review. The authors want to thank Dr. Abdullah M. Al-Sadi who helped with comments and criticism by reading the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hidayat Hussain .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Hussain, H., Schulz, B., Green, I.R. (2019). Fungal Polyketides: Chemical Diversity and Their Cytotoxic Effects. In: Ramawat, K. (eds) Biodiversity and Chemotaxonomy. Sustainable Development and Biodiversity, vol 24. Springer, Cham. https://doi.org/10.1007/978-3-030-30746-2_9

Download citation

Publish with us

Policies and ethics