Skip to main content

Chemotaxonomic Significance of Alkaloids in Plants

  • Chapter
  • First Online:

Part of the book series: Sustainable Development and Biodiversity ((SDEB,volume 24))

Abstract

The classification of plants on the basis of their chemical constituents is a powerful weapon for plant taxonomists. The chemotaxonomic classification, when applied with proper care and phytochemical inputs, is more useful than morphological- and anatomical-based classifications. However, chemotaxonomy also suffers from some noticeable disadvantages like the presence of common compounds in many plants. These compounds have small taxonomic values. Alkaloids are nitrogen-containing secondary metabolites present in plant kingdom. These alkaloids play significant role in chemotaxonomic classification of plants. The present chapter discusses the distribution of alkaloids in plants and their applications in plant taxonomy.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Acamovic T, Stewart CS, Pennycott TW (2004) Poisonous plants and related toxins. CABI, Wallingford, UK

    Book  Google Scholar 

  • Akramov ST, Kiyamitdinova F, Yunusov SY (1965) Study of Rindera and Lindelofia. Dokl Akad Nauk Uzb 22:35–38

    CAS  Google Scholar 

  • Aniszewski T (2007) Alkaloids-secrets of life: alkaloids chemistry, biological significance, applications and ecological role. Elsevier, Amsterdam, The Netherlands

    Google Scholar 

  • Berkov S, Zayed R, Doncheva T (2006) Alkaloid patterns in some varieties of Datura stramonium. Fitoterapia 77:179–182

    Article  CAS  PubMed  Google Scholar 

  • Berkova S, Zayed R (2004) Comparison of tropane alkaloid spectra between Datura innoxia grown in Egypt and Bulgaria. Z Naturforsch C 59:184–186

    Article  Google Scholar 

  • Bindu S, Rameshkumar KB, Kumar B, Singh A, Anilkumar C (2014) Distribution of reserpine in Rauvolfia species from India—HPTLC and LC–MS studies. Ind Crops Prod 62:430–436

    Article  CAS  Google Scholar 

  • Bringmann G, Günther C, Mühlbacher J, Gunathilake MLP, Wickramasinghe A (2000) Tropane alkaloids from Erythroxylum zeylanicum OE Schulz (Erythroxylaceae). Phytochemistry 53:409–416

    Article  CAS  PubMed  Google Scholar 

  • Broun P, Liu Y, Queen E, Schwarz Y, Abenes ML, Leibman M (2006) Importance of transcription factors in the regulation of plant secondary metabolism and their relevance to the control of terpenoid accumulation. Phytochem Rev 5:27–38

    Article  CAS  Google Scholar 

  • Castells E, Mulder PP, Pérez-Trujillo M (2014) Diversity of pyrrolizidine alkaloids in native and invasive Senecio pterophorus (Asteraceae): implications for toxicity. Phytochemistry 108:137–146

    Article  CAS  PubMed  Google Scholar 

  • Costa TDSA, Vieira RF, Bizzo HR, Silveira D, Gimenes MA (2012) Secondary metabolites. In: Dhanarasu S (ed) Chromatography and its applications. InTech Publishers, Croatia, pp 131–164

    Google Scholar 

  • Cromwell BT (1956) The separation, micro-estimation and distribution of the alkaloids of hemlock (Conium maculatum L.). Biochem J 64:259–266

    CAS  PubMed  PubMed Central  Google Scholar 

  • Croteau R, Kutchan TM, Lewis NG (2000) Natural products (secondary metabolites). Biochem Mol Biol Plants 24:1250–1319

    Google Scholar 

  • Dewick PM (2002) Medicinal natural products. A biosynthetic approach, 2nd edn. Wiley, Chichester, New York

    Google Scholar 

  • Dring JV, Nash RJ, Roberts MF, Reynolds T (1984) Hemlock alkaloids in Aloes. Occurrence and distribution of γ-coniceine. Planta Med 50:442–443

    Article  CAS  PubMed  Google Scholar 

  • El-Shazly A, Wink M (2014) Diversity of pyrrolizidine alkaloids in the Boraginaceae structures, distribution, and biological properties. Diversity 6:188–282

    Article  CAS  Google Scholar 

  • Endress ME, Bruyns PV (2000) A revised classification of the Apocynaceae s.l. Bot Rev 66:1–56

    Article  Google Scholar 

  • Endress ME, Liede-Schumann S, Meve U (2014) An updated classification for Apocynaceae. Phytotaxa 159:175–194

    Article  Google Scholar 

  • Gardner DR, Thorne MS, Molyneux RJ, Pfister JA, Seawright AA (2006) Pyrrolizidine alkaloids in Senecio madagascariensis from Australia and Hawaii and assessment of possible livestock poisoning. Biochem Syst Ecol 34:736–744

    Article  CAS  Google Scholar 

  • Griffin WJ, Lin GD (2000) Chemotaxonomy and geographical distribution of tropane alkaloids. Phytochemistry 53(6):623–637

    Article  CAS  PubMed  Google Scholar 

  • Hampel CA, Hawley GG (1976) Glossary of chemical terms. Nostrand Reinhold Company, New York

    Google Scholar 

  • Hartmann T (1999) Chemical ecology of pyrrolizidine alkaloids. Planta 207:483–495

    Article  CAS  Google Scholar 

  • Hartmann T, Ober D (2000) Biosynthesis and metabolism of pyrrolizidine alkaloids in plants and specialized insect herbivores. Springer-Verlag, Berlin, pp 207–243

    Google Scholar 

  • Hartmann T, Witte L (1995) Pyrrolizidine alkaloids: chemical, biological and chemoecological aspects. Alkaloids Chem Biol Perspect 9:155–233

    Article  CAS  Google Scholar 

  • Hegnauer R (1988) Biochemistry, distribution and taxonomic relevance of higher plant alkaloids. Phytochemistry 27:2423–2427

    Article  CAS  Google Scholar 

  • Hesse M (1981) Alkaloid chemistry. Wiley, New York

    Google Scholar 

  • Hotti H, Rischer H (1962) The killer of Socrates: coniine and related alkaloids in the plant kingdom. Molecules 22. https://doi.org/10.3390/molecules22111962

    Article  PubMed Central  CAS  Google Scholar 

  • Hotti H, Gopalacharyulu P, Seppänen-Laakso T, Rischer H (2017) Metabolite profiling of the carnivorous pitcher plants Darlingtonia and Sarracenia. PLoS ONE 12:e0171078

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Huizing HJ, Gadella TW, Kliphuis E (1982) Chemotaxonomical investigations of the Symphytum officinale polyploid complex and S. asperum (Boraginaceae): the pyrrolizidine alkaloids. Plant Syst Evol 140:279–292

    Article  CAS  Google Scholar 

  • Itoh A, Kumashiro T, Yamaguchi M, Nagakura N, Mizushina Y, Nishi T, Tanahashi T (2005) Indole alkaloids and other constituents of Rauwolfia serpentina. J Nat Prod 68:848–852

    Article  CAS  PubMed  Google Scholar 

  • Jakubke H-D, Jeschkeit H, Eagleson M (1994) Concise encyclopedia chemistry. Walter de Gruyter, Berlin, New York

    Google Scholar 

  • Jing H, Liu J, Liu H, Xin H (2014) Histochemical investigation and kinds of alkaloids in leaves of different developmental stages in Thymus quinquecostatus. Sci World J 2014:1–6

    Article  CAS  Google Scholar 

  • Jirschitzka J, Schmidt GW, Reichelt M, Schneider B, Gershenzon J, D’Auria JC (2012) Plant tropane alkaloid biosynthesis evolved independently in the Solanaceae and Erythroxylaceae. Proc Nat Acad Sci 109:10304–10309

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kaur R, Arora S (2015) Alkaloids-important therapeutic secondary metabolites of plant origin. J Crit Rev 2:1–8

    Google Scholar 

  • Kelley RB, Seiber JN (1992) Pyrrolizidine alkaloid chemosystematics in Amsinckia. Phytochemistry 31:2369–2387

    Article  CAS  Google Scholar 

  • Kliebenstein DJ (2012) Making new molecules—evolution of structures for novel metabolites in plants. Curr Opin Plant Biol 16:1–6

    Article  CAS  Google Scholar 

  • Kostova N, Christov V, Cholakova M, Nikolova E, Evstatieva L (2006) Pyrrolizidine alkaloids from Bulgarian species of the genus Senecio. J Serb Chem Soc 71:1275–1280

    Article  CAS  Google Scholar 

  • Kumari R, Rathi B, Rani A, Bhatnagar S (2013) Rauvolfia serpentina L. Benth. ex Kurz.: phytochemical, pharmacological and therapeutic aspects. Int J Pharm Sci Rev Res 23:348–355

    Google Scholar 

  • Kurucu S, Kartal M, Choudhary MI, Topçu G (2002) Pyrrolizidine alkaloids from Symphytum sylvaticum Boiss. subsp. sepulcrale. (Boiss. & Bal.) Greuter & Burdetvar. sepulcrale and Symphytum aintabicum Hub. -Mor. & Wickens. Turk J Chem 26:195–200

    Google Scholar 

  • Langel D, Ober D, Pelser PB (2011) The evolution of pyrrolizidine alkaloid biosynthesis and diversity in the Senecioneae. Phytochem Rev 10:3–74

    Article  CAS  Google Scholar 

  • Liu F, Wan SY, Jiang Z, Li SFY, Ong ES, Osorio JCC (2009) Determination of pyrrolizidine alkaloids in comfrey by liquid chromatography–electrospray ionization mass spectrometry. Talanta 80:916–923

    Article  CAS  PubMed  Google Scholar 

  • Lounasmaa M, Tamminen T (1993) The tropane alkaloids: chemistry and Biology. In: Cordell GA (ed) The alkaloids, vol 44. Academic Press, New York, pp 1–114

    Google Scholar 

  • Mandić BM, Simić MR, Vučković IM, Vujisić LV, Novaković MM, Trifunović SS, Milosavljević SM (2013) Pyrrolizidine alkaloids and fatty acids from the endemic plant species Rindera umbellata and the effect of lindelofine-N-oxide on tubulin polymerization. Molecules 18:10694–10706

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Matsuura HN, Fett-Neto AG (2015) Plant alkaloids: main features, toxicity, and mechanisms of action. In: Gopalakrishnakone P, Carlini C, Ligabue-Braun R (eds) Plant toxins. Toxinology. Springer, Dordrecht

    Google Scholar 

  • McLean EK (1970) The toxic actions of pyrrolizidine (Senecio) alkaloids. Pharmacol Rev 22:429–483

    CAS  PubMed  Google Scholar 

  • Mel’kumova ZV, Telzhenetskaya MV, Yunusov SY, Man’ko IV (1974) Refinement of the structure of asperumine. Khim Prir Soed 4:478–480

    Google Scholar 

  • Misra A, Srivastava S (2016) Chemotaxonomy: an approach for conservation and exploration of industrially potential medicinal plants. J Pharmacogn Nat Prod 2:108

    Article  Google Scholar 

  • Mody NV, Henson R, Hedin PA, Kokpol U, Miles DH (1976) Isolation of insect paralysing agent coniine from Sarracenia flava. Experientia 32:829–830

    Article  CAS  Google Scholar 

  • Mroczek T, Baj S, Chrobok A, Glowniak K (2004) Screening for pyrrolizidine alkaloids in plant materials by electron ionization RP-HPLC-MS with thermabeam interface. Biomed Chromatogr 18:745–751

    Article  CAS  PubMed  Google Scholar 

  • Nash RJ, Beaumont J, Veitch NC, Reynolds T, Benner J, Hughes CNG, Dring JV, Bennett RN, Dellar JE (1992) Phenylethylamine and piperidine alkaloids in Aloe species. Planta Med 58:84–87

    Article  CAS  PubMed  Google Scholar 

  • O’Connor SE, Maresh JJ (2006) Chemistry and biology of monoterpene indole alkaloid biosynthesis. Nat Prod Rep 23:532–547

    Article  PubMed  CAS  Google Scholar 

  • Okwu DE, Okwu ME (2004) Chemical composition of Spondias mombin Linn plant parts. J Sustain Agric Environ 6:140–147

    Google Scholar 

  • Panter KE, Bunch TD, Keeler RF, Sisson DV (1988) Radio ultrasound observation of the fetotoxic effects in sheep from ingestion of Conium maculatum (poison-hemlock). J Toxicol Clin Toxicol 26:175–187

    Article  CAS  PubMed  Google Scholar 

  • Pelletier SW (1983) The nature and definition of an alkaloid. In: Pelletier SW (ed) Alkaloids. Chemical and biological perspectives, vol 1. Wiley, New York, pp 1–31

    Google Scholar 

  • Pelser PB, de Vos H, Theuring C, Beuerle T, Vrieling K, Hartmann T (2005) Frequent gain and loss of pyrrolizidine alkaloids in the evolution of Senecio section Jacobaea (Asteraceae). Phytochemistry 66:1285–1295

    Article  CAS  PubMed  Google Scholar 

  • Pigatto AGS, Blanco CC, Mentz LA, Soares GLG (2015) Tropane alkaloids and calystegines as chemotaxonomic markers in the Solanaceae. An Acad Bras Ciênc 87:2139–2149

    Article  CAS  PubMed  Google Scholar 

  • Plowman T (1981) Amazonian coca. J Ethnopharmacol 3:195–225

    Article  CAS  PubMed  Google Scholar 

  • Radusiene J, Karpaviciene B, Stanius Z (2012) Effect of external and internal factors on secondary metabolites accumulation in St. John’s worth. Bot Lith 18:101–108

    Article  Google Scholar 

  • Reimann A, Nurhayati N, Backenköhler A, Ober D (2004) Repeated evolution of the pyrrolizidine alkaloid–mediated defence system in separate angiosperm lineages. Plant Cell 16:2772–2784

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reynolds T (2005) Hemlock alkaloids from Socrates to poison aloes. Phytochemistry 66:1399–1406

    Article  CAS  PubMed  Google Scholar 

  • Roberts MF, Wink M (1998) Alkaloids: biochemistry, ecology and medicinal applications. Planum Press, New York

    Book  Google Scholar 

  • Roeder E (1999) Analysis of pyrrolizidine alkaloids. Curr Org Chem 3:557–576

    Article  CAS  Google Scholar 

  • Roeder E (2000) Medicinal plants in China containing pyrrolizidine alkaloids. Pharmazie 55:711–726

    CAS  PubMed  Google Scholar 

  • Roeder E, Wiedenfeld H (2009) Pyrrolizidine alkaloids in medicinal plants of Mongolia, Nepal and Tibet. Pharmazie 64:699–716

    CAS  PubMed  Google Scholar 

  • Roeder E, Wiedenfeld H (2013) Plants containing pyrrolizidine alkaloids used in the Traditional Indian Medicine—including Ayurveda. Pharmazie 68:83–92

    CAS  PubMed  Google Scholar 

  • Roitman JN (1988) Longitubine and neolatifoline, new pyrrolizidine alkaloids from Hackelia longituba. Aust J Chem 41:1827–1833

    Article  CAS  Google Scholar 

  • Said-Al Ahl HAH, Omer EA (2011) Medicinal and aromatic plants production under salt stress. A review. Herba Pol 57:72–87

    Google Scholar 

  • Singh R (2016) Chemotaxonomy: a tool for plant classification. J Med Plants Stud 4:90–93

    Google Scholar 

  • Singh R, Geetanjali (2018) Chapter 6: Chemotaxonomy of medicinal plants: possibilities and limitations. In: Mandal SC, Mandal V, Konishi T (eds) Natural products and drug discovery—an integrated approach. Elsevier, pp 119–136

    Google Scholar 

  • Singh R, Geetanjali, Singh V (2011) Exploring alkaloids as inhibitors of selected enzymes. Asian J Chem 23:483–490

    Google Scholar 

  • Sivarajan VV (1991) Introduction to the principles of plant taxonomy. Cambridge University Press

    Google Scholar 

  • Smith LW, Culvenor CCJ (1981) Plant sources of hepatotoxic pyrrolizidine alkaloids. J Nat Prod 44:129–152

    Article  CAS  PubMed  Google Scholar 

  • Soler-Rodríguez F, Martín A, García-Cambero JP, Oropesa AL, Pérez-López M (2006) Datura stramonium poisoning in horses: a risk factor for colic. Vet Rec 158:132–133

    Article  PubMed  Google Scholar 

  • Souza JSN, Machado LL, Pessoa OD, Braz-Filho R, Overk CR, Yao P, Lemos TL (2005) Pyrrolizidine alkaloids from Heliotropium indicum. J Braz Chem Soc 16:1410–1414

    Article  CAS  Google Scholar 

  • Taylor WI, Farnsworth NR (eds) (1975) The Catharanthus alkaloids. Botany, chemistry, pharmacology, and clinical use. In: Stearn WT. A synopsis of the genus Catharanthus (Apocynaceae). Marcel Dekker, Inc., New York, pp 9–44

    Google Scholar 

  • Trigo JR, Leal IR, Matzenbacher NI, Lewinsohn TM (2003) Chemotaxonomic value of pyrrolizidine alkaloids in southern Brazil Senecio (Senecioneae: Asteraceae). Biochem Syst Ecol 31:1011–1022

    Article  CAS  Google Scholar 

  • Tundis R, Loizzo MR, Bonesi M, Menichini F, Dodaro D, Passalacqua NG, Menichini F (2009) In vitro cytotoxic effects of Senecio stabianus Lacaita (Asteraceae) on human cancer cell lines. Nat Prod Res 23:1707–1718

    Article  CAS  PubMed  Google Scholar 

  • van der Heijden R, Jacobs DI, Snoeijer W, Hallard D, Verpoorte R (2004) The Catharanthus alkaloids: pharmacognosy and biotechnology. Curr Med Chem 11:607–628

    Article  Google Scholar 

  • Verma N, Shukla S (2015) Impact of various factors responsible for fluctuation in plant secondary metabolites. J Appl Res Med Aromat Plants 49:1–9

    Google Scholar 

  • Wink M (1993) Quinolizidine alkaloids. In: Waterman PG (ed) Methods in plant biochemistry. Academic Press, London, pp 197–239

    Google Scholar 

  • Wink M (2003) Evolution of secondary metabolites from an ecological and molecular phylogenetic perspective. Phytochemistry 64:3–19

    Article  CAS  PubMed  Google Scholar 

  • Wink M (2013) Evolution of secondary metabolites in legumes (Fabaceae). S Afr J Bot 89:164–175

    Article  CAS  Google Scholar 

  • Xu Z, Deng M (2017) Identification and control of common weeds. Springer 2547-615

    Google Scholar 

  • Zhi-Lin Y, Chuan-Chao D, Lian-Qing C (2007) Regulation and accumulation of secondary metabolites in plant-fungus symbiotic system. Afr J Biotechnol 6:1266–1271

    Google Scholar 

  • Zhu J, Wang M, Wen W, Yu R (2015) Biosynthesis and regulation of terpenoid indole alkaloids in Catharanthus roseus. Pharmacog Rev 9:24–28

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The author Poonam is thankful to Delhi Technological University for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ram Singh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Singh, R., Poonam, Geetanjali (2019). Chemotaxonomic Significance of Alkaloids in Plants. In: Ramawat, K. (eds) Biodiversity and Chemotaxonomy. Sustainable Development and Biodiversity, vol 24. Springer, Cham. https://doi.org/10.1007/978-3-030-30746-2_6

Download citation

Publish with us

Policies and ethics