Skip to main content

The ‘Sixth Mass Extinction Crisis’ and Its Impact on Flowering Plants

  • Chapter
  • First Online:
Biodiversity and Chemotaxonomy

Part of the book series: Sustainable Development and Biodiversity ((SDEB,volume 24))

  • 712 Accesses

Abstract

Human-induced environmental changes caused by habitat loss and its degradation, overexploitation of resources and climate change, have already pushed considerable number of plant and animal species to extinction, and a large number of them are at the verge of extinction. These catastrophic environmental changes have precipitated the ‘sixth mass extinction crisis’ in which a large proportion of the species would be lost in geologically a short time. As biological diversity and ecosystem functioning form the basis of human existence, human-induced environmental changes may eventually lead to serious repercussions on the biosphere and threaten the survival of the human race itself. Conservation of biodiversity and ecosystem functioning has, therefore, become a major challenge the humanity has to face in the coming decades. Flowering plants form the major component of plant diversity. Sustainability of the prevailing diversity depends on the ability of species/populations to reproduce and recruit new individuals to sustain populations. Recruitment is the final step in a long series of sequential events starting with the flower. Among these sequential events, pollination, a prerequisite for fruit and seed set, and seed dispersal, needed for effective recruitment of new individuals, are two of the most critical events, and both involve largely plant–animal mutualism. Human-induced environmental changes have imposed serious constraints on these mutualisms, thus seriously hampering recruitment. ‘Global pollinator crisis’ has been recognized as a major hazard not only for the sustainability of plant diversity but also for crop productivity and thus the food and nutritional security of human beings. Climate change, apart from inducing migration of species to higher altitudes and latitudes, brings about phenological changes particularly in the time of flowering and fruiting resulting in mismatches between the plant and animal partners involved in mutualistic interactions. There is an urgent need for concerted global action to reduce and reverse this trend of environmental degradation and thus conserve our biological diversity and ecosystem services to protect ourselves and our Planet.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abhilash PC, Dubey RK (2014) Integrating aboveground–belowground responses to climate. Curr Sci 106:1637–1638

    Google Scholar 

  • Aguilar R et al (2006) Plant reproductive susceptibility to habitat fragmentation: review and synthesis through a meta-analysis. Eco Lett 9:968–980

    Article  Google Scholar 

  • Akst J (2019) Thousands of australian animals die in unprecedented heatwave. The Scientist, 17 Jan 2019

    Google Scholar 

  • Allen JM, Terres MA, Katasuki T, Iwamoto K et al (2013) Modeling daily flowering probabilities: expected impact of climate change on Japanese cherry phenology. Global Change Bio. https://doi.org/10.1111/gcb.12364

    Article  Google Scholar 

  • Anonymous (2007) Special section: pervasive consequences of hunting in tropical forests. Biotropica 39(3):289–392

    Article  Google Scholar 

  • Anonymous (2014) Special section: vanishing fauna. Science 245(6195):392–412

    Google Scholar 

  • Anonymous (2017a) State of world’s birds. Birdlife International 2017. https://www.birdlife.org/sites/default/files/attachments/BL_ReportENG_V11_spreads.pdf. Accessed on Apr 2018

  • Anonymous (2017b) Down to earth, centre for environmental studies, New Delhi, 16–31 Oct 2017, pp 22–23

    Google Scholar 

  • Anonymous (2018) https://royalsociety.org/~/media/news/2018/commonwealth-academies-consensus-statement-on-climate-change-12-march-2018.pdf. Accessed on Mar 2018

  • Aslan CE, Zavaleta ES, Tershy B, Croll D (2013) Mutualism disruption threatens global plant biodiversity: a systematic review. PLoS ONE 8(6):e66993. https://doi.org/10.1371/journal.pone.0066993

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Barnosky AD et al (2011) Has the Earth’s sixth mass extinction already arrived? Nature 471:51–57

    Article  CAS  PubMed  Google Scholar 

  • Bartomeus I, Ascher JS, Wagner D et al (2011) Climate-associated phenological advances in bee pollinators and bee-pollinated plants. Proc Natl Acad Sci USA 51:20645–20649

    Article  Google Scholar 

  • Bawa KS, Primack RB, Oommen MN (2011) Conservation biology: a primer for South Asia. Universities Press, Hyderabad

    Google Scholar 

  • Beckage B, Osborne B, Gavin DG et al (2008) A rapid upward shift of a forest ecotone during 40 years of warming in the Green Mountains of Vermont. Proc Natl Acad Sci USA 105:4197–4202

    Article  CAS  PubMed  Google Scholar 

  • Beckman NG, Muller-Landau HC (2007) Differential effects of hunting on pre-dispersal seed predation and primary and secondary seed removal of two Neotropical tree species. Biotopica 39:328–339

    Article  Google Scholar 

  • Bertrand et al (2011) Changes in plant community composition lag behind climate warming in lowland forests. Nature 479:517–520

    Article  CAS  PubMed  Google Scholar 

  • Bharali S, Khan ML (2011) Climate change and its impact on biodiversity; some management options for mitigation in Arunachal Pradesh. Curr Sci 110:835–860

    Google Scholar 

  • Biesmeijer JC, Roberts SPM, Reemer M et al (2006) Parallel declines in pollinators and insect-pollinated plants in Britain and the Netherlands. Science 313:351–354

    Article  CAS  PubMed  Google Scholar 

  • Beketov M, Kefford B, Schafer R, Liess M (2013) Pesticides reduce regional biodiversity of stream invertebrates. Proc Natl Acad Sci USA 110:11039–11043

    Article  CAS  PubMed  Google Scholar 

  • Brittain CA et al (2010) Impacts of a pesticide on pollinator species richness at different spatial scales. Basic Appl Eco 11:106–115

    Article  CAS  Google Scholar 

  • Brittain C, Williams N, Kremen C, Klein A-M (2013) Synergistic effects of non-Apis bees and honey bees for pollination services. Proc R Soc B 280:20122767. https://doi.org/10.1098/rspb.2012.2767

    Article  PubMed  Google Scholar 

  • Buchmann SL, Nabhan GP (1996) The forgotten pollinators. Island Press, Washington, DC

    Google Scholar 

  • Burkle LA, Marlin JC, Knight TM (2013) Plant-pollinator interactions over 120 years: loss of species, co-occurrence, and function. Science 339:1611–1615

    Article  CAS  PubMed  Google Scholar 

  • Callum J et al (2015) Pollination by nocturnal Lepidoptera, and the effects of light pollution: a review. Ecol Entomol 40:187–198

    Google Scholar 

  • Cameron SA, Lozier JD, Strange JP et al (2011) Patterns of widespread decline in North American bumble bees. Proc Natl Acad Sci USA 108:662–667

    Article  CAS  PubMed  Google Scholar 

  • Carlton JT (2017) Tsunami-driven rafting: transoceanic species dispersal and implications for marine biogeography. Science 357:1402–1406

    Article  CAS  PubMed  Google Scholar 

  • Carnelissen T (2011) Climate change and its effects on terrestrial insects and herbivory patterns. Neotrop Entomol 40:155–163

    Article  Google Scholar 

  • Ceballos G et al (2017) Biological annihilation via the ongoing sixth mass extinction signaled by vertebrate population losses and declines. Proc Natl Acad Sci USA 114. https://doi.org/10.1073/pnas.1704949114

    Article  CAS  Google Scholar 

  • Chakrabarti P, Sarkar S, Basu P (2018) Field populations of wild Apis cerana honey bees exhibit increased genetic diversity under pesticide stress along an agricultural intensification gradient in eastern India. J Insect Sci 18:1–8

    Article  CAS  Google Scholar 

  • Chakraborty A (2016) Fading scent of musk deer. Down To Earth, 16–30 Sept 2016, pp 37–38

    Google Scholar 

  • Chechetka SA, Yu Y, Tange M, Miyako E (2017) Materially engineered artificial pollinators. Chem 2:224–239

    Article  CAS  Google Scholar 

  • Cheng L, Abraham J, Hausfather Z et al (2019) How fast are the oceans warming? Science 363:128–129

    Article  CAS  PubMed  Google Scholar 

  • Cleland EE et al (2007) Shifting plant phenology in response to global change. Trends Ecol Evol 22:357–365

    Article  PubMed  Google Scholar 

  • Corlett RT (2007a) The impact of hunting on the mammalian fauna of tropical Asian forests. Biotropica 39:292–303

    Article  Google Scholar 

  • Corlett RT (2007b) Pollination or seed dispersal: which should worry about most? In: Dennis AJ, Schupp EW, Green RJ, Wescott DA (eds) Seed dispersal: theory and its application in a changing world. CAI International, Wallingford, pp 423–544

    Google Scholar 

  • Crutzen PJ (2002) Geology of mankind. Nature 415:23

    Article  CAS  PubMed  Google Scholar 

  • da Silva Melo M, de Oliveira DE, Franceschinelli EV (2014) Density and fertility of Byrsonima pachyphylla A. Juss. (Malpighiaceae) in small fragments of the Brazilian Cerrado. Acta Bot Brazilica 28:259–265

    Article  Google Scholar 

  • DeFries RS, Foley JA, Asner GP (2004) Land-use choices: balancing human needs and ecosystem function. Front Ecol Environ 2:249–257

    Article  Google Scholar 

  • Diamond J (2005) Collapse: how societies choose to fail or succeed. Penguin Books

    Google Scholar 

  • Dicks LV et al (2016) Ten policies for pollinators. Science 354:975–976

    Article  CAS  PubMed  Google Scholar 

  • Dirzo R et al (2014) Defaunation in the anthropocene. Science 245:401–406

    Article  CAS  Google Scholar 

  • Dunnell KL, Travers SE (2011) Shifts in the flowering phenology of the northern Great Plains: patterns over 100 years. Am J Bot 98:935–945

    Article  PubMed  Google Scholar 

  • Franklin KA, Sommers PN, Aslan CE (2016) Plant biotic interactions in the Sonoran Desert: current knowledge and future research perspectives. Int J Plant Sci 177:217–234

    Article  Google Scholar 

  • Forrest JRK, Thomson JD (2011) An examination of synchrony between insect emergence and flowering in the Rocky Mountain meadows. Ecol Monogr 81:469–491

    Article  Google Scholar 

  • Gaira KS et al (2014) Rhododendron: impact of climate change on the flowering of arboreumin central Himalaya, India. Curr Sci 106:1735–1738

    Google Scholar 

  • Gammans M et al (2017) Negative impacts of climate change on cereal yields: statistical evidence from France. Environ Res Lett. https://doi.org/10.1088/1748-9326/aa6b0c

    Article  Google Scholar 

  • Ganesan R, Setty RS (2004) Regeneration of amla, an important non-timber forest product from Southern India. Conserv Soc 2:365–375

    Google Scholar 

  • Garibaldi LA, Steffan-Dewenter I, Winfree R et al (2013) Wild pollinators enhance fruit set of crops regardless of honey bee abundance. Science 339:1608–1611

    Article  CAS  PubMed  Google Scholar 

  • Gaston KJ (2010) Biodiversity. In: Sodhi NS, Ehrlich PR (eds) Conservation biology for all. Oxford University Press, Oxford, pp 27–44

    Chapter  Google Scholar 

  • Gautam HR et al (2014) Climate change is affecting apple cultivation in Himachal Pradesh. Curr Sci 106:498–499

    Google Scholar 

  • Gerland P et al (2014) World population stabilization unlikely this century. Science 346:234–237

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gertner J (2019) The tiny Swiss company that thinks it can help stop climate change. New York Times Magazine, 12 Feb 2019

    Google Scholar 

  • Ghazoul J, Sheil D (2010) Tropical rain forest ecology, diversity and conservation. Oxford University Press, Oxford, New York

    Google Scholar 

  • Gleckler PJ et al (2016) Industrial-era global ocean heat uptake doubles in recent decades. Nat Clim Change 6:394–398

    Article  Google Scholar 

  • Gordo O, Sanz JJ (2005) Phenology and climate change: along-term study in a Mediterranean locality. Ecologia 146:484–495

    Google Scholar 

  • Goulson D (2013) An overview of the environmental risks posed by neonicotinoid insecticides. J Appl Ecol 50:977–987

    Article  Google Scholar 

  • Grabherr G, Gottfried M, Pauli H (1994) Climate effects on mountain plants. Nature 369:448

    Article  CAS  PubMed  Google Scholar 

  • Greenleaf SS, Kremen C (2006) Wild bees enhance honey bees’ pollination of hybrid sunflower. Proc Natl Acad Sci USA 103:13890–13895

    Article  CAS  PubMed  Google Scholar 

  • Hallmann CA et al (2017) More than 75 percent decline over 27 years in total flying insect biomass in protected areas. PLoS ONE 12(10):e0185809. https://doi.org/10.1371/journal.pone.0185809

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Harrison RD (2000) Repercussions of El Nino: drought causes extinction and the breakdown of mutualism in Borneo. Proc R Soc B 267:911–915

    Article  CAS  PubMed  Google Scholar 

  • Harvey JA, Malcicka M (2014) Climate change, range shifts and multitrophic interactions. INTECH. http://creativecommons.org/licenses/by/3.0. Accessed on May 2018

  • Hegland SJ et al (2009) How does climate warming affect plant-pollinator interactions? Ecol Lett 12:184–195

    Article  PubMed  Google Scholar 

  • Holden C (2006) Report warns of looming pollination crisis in North America. Science 314:397

    Article  CAS  PubMed  Google Scholar 

  • Howe HF (1990) Seed dispersal by birds and mammals: implications for seedling demography. In: Bawa KS, Hadley M (eds) Reproductive ecology of tropical forest plants. UNESCO and The Parthenon Publishing Group, Paris, pp 191–218

    Google Scholar 

  • Howe HF, Smallwood J (1982) Ecology of seed dispersal. Ann Rev Ecol Syst 13:201–228

    Article  Google Scholar 

  • Hughes TP et al (2018) Global warming transforms coral reef assemblages. Nature. https://doi.org/10.1038/s41586-018-0041-2

    Article  PubMed  PubMed Central  Google Scholar 

  • IPBES (2016) Summary for policymakers of the assessment report of the intergovernmental science-policy platform on biodiversity and ecosystem services on pollinators, pollination and food production. In: Potts SG et al (eds). IPBES Secretariat, Bonn, Germany, p 36

    Google Scholar 

  • IPBES (2018) Summary for policymakers of the thematic assessment report on land degradation and restoration of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services. In: Scholes R et al (eds). IPBES secretariat, Bonn, Germany, p 31

    Google Scholar 

  • IPCC (2014) Climate change 2014: synthesis report. Intergovernmental Panel on Climate Change, Geneva, Switzerland

    Google Scholar 

  • IUCN (2017) The IUCN red list of threatened species. Version 2017-3. International Union for Conservation of Nature and Natural Resources

    Google Scholar 

  • Jacobs J (2018) Vaccine for honeybees could be a tool to fight population decline. New York Times, Science, 23 Dec 2018

    Google Scholar 

  • James RR, Pitts-Singer TL (eds) (2008) Bee pollination in agricultural ecosystems. Oxford University Press, Oxford, New York

    Google Scholar 

  • Kartikeya S et al (2012) Screening of tomato genotypes for reproductive characters under high temperature stress conditions. Sabrao J Breed Genet 44:263–276

    Google Scholar 

  • Kearns CA, Inouye DW, Waser NM (1998) Endangered mutualisms: the conservation of plant-pollinator interactions. Ann Rev Ecol Syst 29:83–112

    Article  Google Scholar 

  • Kerr et al (2015) Climate impacts on bumblebees converge across continents. Science 349:177–180

    Article  CAS  PubMed  Google Scholar 

  • Kimball BA (1983) Carbon dioxide and agricultural yield: an assemblage and analysis of 430 prior observations. Agron J 75:779–788

    Article  Google Scholar 

  • Knop E et al (2017) Artificial light at night as a new threat to pollination. Nature 548:206–209

    Article  CAS  PubMed  Google Scholar 

  • Kolbert E (2014) The sixth extinction: an unusual history. Henry Holt and Co, NY

    Google Scholar 

  • Kremen C, Ricketts T (2000) Global perspectives on pollination disruptions. Conserv Biol 14:1226–1228

    Article  Google Scholar 

  • Kudo G (2014) Vulnerability of phenological synchrony between plants and pollinators in an alpine ecosystem. Ecol Res 29:571–581

    Article  Google Scholar 

  • Kudo G, Ida TY (2013) Early onset of spring increases the mismatch between plants and pollinators. Ecology 94:2311–2320

    Article  PubMed  Google Scholar 

  • Lallensack RL (2017) Could this pollinating drone replace butterflies and bees? Science, 9 Feb, 2017. https://doi.org/10.1126/science.aal0730

  • Lenzen M, Moran D, Kanemoto K et al (2012) International trade drives biodiversity threats in developing nations. Nature 486:109–112

    Article  CAS  PubMed  Google Scholar 

  • Lister BC, Garcia A (2018) Climate-driven declines in arthropod abundance restructure a rainforest food web. PNAS 115(44):E10397–E10406. www.pnas.org/cgi/doi/10.1073/pnas.1722477115

    Article  CAS  Google Scholar 

  • Long SP, Ainsworth EA, Leakey ADB et al (2006) Food for thought: lower-than-expected crop yield stimulation with rising CO2 concentrations. Science 312:1918–1921

    Article  CAS  PubMed  Google Scholar 

  • Lovejoy TE, Hannah L (eds) (2005) Climate change and biodiversity. Yale University Press, New Haven, London

    Google Scholar 

  • Memmott J, Craze PG, Waser NM, Price MV (2007) Global warming and the disruption of plant-pollinator interactions. Ecol Lett 10:710–717

    Article  PubMed  Google Scholar 

  • Miller-Rushing AJ, Forrest J (eds) (2010) Theme issue ‘The role of phenology in ecology and evolution’. Phil Trans Royal Soc B 365:3101–3260

    Google Scholar 

  • Miller-Rushing AJ et al (2010) The effects of phenological mismatches on demography. Phil Trans R Soc B 365:3177–3186

    Article  PubMed  Google Scholar 

  • Montzka SA, Dutton GS, Yu P, Portmann RW et al (2018) An unexpected and persistent increase in global emissions of ozone-depleting CFC-11. Nature 557:413–417

    Article  CAS  PubMed  Google Scholar 

  • Moran D, Kanemoto K (2017) Identifying species threat hotspots from global supply chains. Nat Ecol Environ 1. https://doi.org/10.1038/s41559-016-0023

  • Murali KS et al (1996) Extraction of non-timber forest products in the forests of Biligiri Rangan Hills, India. 2. Impact of NTFP extraction on regeneration, population structure and species composition. Econ Bot 50:252–269

    Article  Google Scholar 

  • Murray TE et al (2009) Conservation ecology of bees: populations, species and communities. Apidologie 40:211–236

    Article  Google Scholar 

  • Nayak KG, Davidar P (2010) Pollinator limitation and the effect of breeding systems on plant reproduction in forest fragments. Acta Oecol 36:191–196

    Article  Google Scholar 

  • Nogrady B (2019) Mass fish deaths in Australian set to continue. Nature News. https://doi.org/10.1038/d41586-019-00146-5

    Article  Google Scholar 

  • Norjhauer JM, Newberg DM (2010) Recruitment limitation after mast seeding in two African rain forest trees. Ecology 91:2303–2312

    Article  Google Scholar 

  • Nunez-Iturri G, Howe HF (2007) Bushmeat and the fate of trees with seeds dispersed by large primates in a lowland rain forest in Western Amazonia. Biotropica 39:348–354

    Article  Google Scholar 

  • Obute GC (2010) Pollination: a threatened vital biodiversity service to humans and the environment. Int J Biodivers Conserv 2:1–13

    Google Scholar 

  • O’Hanlon SJ et al (2018) Recent Asian origin of chytrid fungi causing global amphibian declines. Science 360:621–627

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Parmesan C, Yohe G (2003) A globally coherent fingerprint of climate change impacts across natural systems. Nature 421:37–42

    Article  CAS  PubMed  Google Scholar 

  • Parmesan C et al (1999) Poleward shifts in geographical ranges of butterfly species associated with regional warming. Nature 399:579–583

    Article  CAS  Google Scholar 

  • Patiny S (ed) (2012) Evolution of plant-pollinator relationships. The Systematic Association Special, vol 81. Cambridge University Press, New York

    Google Scholar 

  • Pimm SL (2009) Climate disruption and biodiversity. Curr Biol 19:R595–R601

    Article  CAS  PubMed  Google Scholar 

  • Porrinni C et al (2014) Using honey bee as bioindicator of chemicals in Campanian agroecosystems (South Italy). Bull Insectology 67:137–146

    Google Scholar 

  • Potts SG, Biesmeijer JC, Kremen C et al (2010) Global pollinator declines: trends, impacts and drivers. Trends Ecol Evol 25:345–353

    Article  PubMed  Google Scholar 

  • Primack RB, Higuchi H, Miller-Rushing AJ (2009) The impact of climate change on cherry trees and other species in Japan. Biol Conserv 142:1943–1949

    Article  Google Scholar 

  • Rignot E, Mouginot J, Scheuchl B et al (2019) Four decades of Antarctic ice sheet mass balance from 1979–2017. Proc Natl Acad Sci USA 116:1095–1103

    Article  CAS  PubMed  Google Scholar 

  • Ripple WJ et al and 15,364 scientist signatories from 184 countries (2017) World scientists’ warning to humanity: a second notice. BioSci 67:1026–1028

    Google Scholar 

  • Robbirt KM et al (2014) Potential disruption of pollination in a sexually deceptive orchid by climatic change. Curr Biol 24:2845–2849

    Article  CAS  PubMed  Google Scholar 

  • Rodell M, Famiglietti JS, Wiese DN et al (2018) Emerging trends in global fresh water availability. Nature. https://doi.org/10.1038/s41586-018-0123-1

    Article  PubMed  PubMed Central  Google Scholar 

  • Rogelj J et al (2018) Scenarios towards limiting global mean temperature increase below 1.5 C. Nat Clim Change. https://doi.org/10.1038/s41558-018-0091-3

    Article  CAS  Google Scholar 

  • Rothman DH (2017) Thresholds of catastrophe in the Earth system. Sci Adv 3:e1700906

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Roubik DW (ed) (1995) Pollination of cultivated plants in the Tropics. FAO Agriculture Service Bulletin 118. FAO, UN, Rome

    Google Scholar 

  • Rundolf M et al (2015) Seed coating with a neonicotinoid insecticide negatively affects wild bees. Nature 521:77–80

    Article  CAS  Google Scholar 

  • Salmela H, Amdam GV, Freitak D (2017) Transfer of immunity from mother to offspring is mediated via egg-yolk protein vitellogenin. PLoS Pathog 11(7):e1005015. https://doi.org/10.1371/journal.ppat.1005015

    Article  CAS  Google Scholar 

  • Samejima H et al (2004) The effects of human disturbance on a stingless bee community in a tropical rainforest. Biol Conserv 120:577–587

    Article  Google Scholar 

  • Sanchez-Bayo F, Wyckhuys KAG (2019) Worldwide decline of the entomofauna: a review of its drivers. Biol Conserv 232:8–27

    Article  Google Scholar 

  • Sax DF, Gaines SD (2008) Species invasions and extinction: the future of native biodiversity on islands 105:11490–11497

    CAS  Google Scholar 

  • Settele J, Bishop J, Potts SG (2016) Climate change impacts on pollination. Nat Plants 2:16092

    Article  PubMed  Google Scholar 

  • Shivanna KR (2003) Pollen biology and biotechnology. Science Publishers Inc, Enfield/Plymouth

    Google Scholar 

  • Shivanna KR (2014) Biotic pollination: how do plants achieve conflicting demands of attraction and restriction of potential pollinators. In: Ramawat KG, Merillon J-M, Shivanna KR (eds) Reproductive biology of plants. CRC Press, pp 218–267

    Google Scholar 

  • Sinu PA, Shivanna KR (2016) Factors affecting recruitment of a critically-endangered Dipterocarp species, Vateria indica in the Western Ghats, India. Proc Natl Acad Sci, India B 86:857–862

    Google Scholar 

  • Skerratt LF et al (2007) Spread of chytridiomycosis has caused the rapid global decline and extinction of frogs. EcoHealth 4:125–134

    Article  Google Scholar 

  • Sodhi NS, Ehrlich PR (eds) (2010) Conservation biology for all. Oxford Univ Press, Oxford

    Google Scholar 

  • Tadwalkar MD et al (2012) Dispersal modes of woody species from the northern Western Ghats, India. Trop Ecol 53:53–67

    Google Scholar 

  • Thackeray et al (2016) Phenological sensitivity to climate across taxa and trophic levels. Nature 535:241–245

    Article  CAS  PubMed  Google Scholar 

  • Thomas CD, Cameron A, Green RE et al (2004) Extinction risk from climate change. Nature 427:145–148

    Article  CAS  PubMed  Google Scholar 

  • Thomson JD (2010) Flowering phenology, fruiting success and progressive deterioration of pollination in an early-flowering geophyte. Phil Trans R Soc B 365:3187–3199

    Article  PubMed  Google Scholar 

  • Tilman D, Reich PB, Knops J, Wedin D, Mielke T (2001) Diversity and productivity in a long-term grassland experiment. Science 294:843–845

    Article  CAS  PubMed  Google Scholar 

  • Trusel LD, Das SB, Osman MB et al (2018) Nonlinear rise in Greenland runoff in response to post-industrial Arctic warming. Nature 564:104–108

    Article  CAS  PubMed  Google Scholar 

  • Turner IM (2001) The ecology of seeds in tropical rain forests. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Tylianakis JM (2013) The global plight of pollinators. Science 339:1532–1533

    Article  CAS  PubMed  Google Scholar 

  • Urban MC (2015) Accelerating extinction risk from climate change. Science 348:571–573

    Article  CAS  PubMed  Google Scholar 

  • Van der Putten WH (2012) Climate change, aboveground-belowground interactions, and species’ range shifts. Ann Rev Ecol Evol Syst 43:365–383

    Article  Google Scholar 

  • Wang BC et al (2007) Hunting of mammals reduces seed removal and dispersal of the Afrotropical tree Antrocaryon klaineanum (Anacardiaceae). Biotropica 39:340–347

    Article  Google Scholar 

  • Warren et al (2018) The projected effect on insects, vertebrates, and plants of limiting global warming to 1.5 °C rather than 2 °C. Science 360:791–795

    Article  CAS  PubMed  Google Scholar 

  • Wester P et al (eds) (2019) The Hindu Kush Himalaya assessment: mountains, climate change, sustainability and people. Springer, Berlin

    Google Scholar 

  • Wilcock C, Neiland R (2002) Pollination failure in plants: why it happens and when it matters. Trends Plant Sci 7:270–277

    Article  CAS  PubMed  Google Scholar 

  • Willmer P (2011) Pollination and floral ecology. Princeton University Press, Princeton, NJ

    Book  Google Scholar 

  • Wilson EO (1997) Introduction. In: Wilson DE, Wilson EO, Reaka-Kudla ML (eds) Biodiversity II. Understanding and protecting our biological resources. Joseph Henry Press, Washington DC

    Google Scholar 

  • Wright SJ et al (2007) The plight of large animals in tropical forests and the consequences for plant regeneration. Biotropica 39:289–291

    Article  Google Scholar 

  • Xie W et al (2018) Decreases in global beer supply due to extreme drought and heat. Nat Plants 4. https://doi.org/10.1038/s41477-018-0263-1

    Article  PubMed  Google Scholar 

  • Zhao C et al (2017) Temperature increase reduces global yields of major crops in four independent estimates. Proc Natl Acad Sci USA 114:9326–9331

    Article  CAS  PubMed  Google Scholar 

  • Zhu C et al (2018) Carbon dioxide (CO2) levels this century will alter the protein, micronutrients, and vitamin content of rice grains with potential health consequences for the poorest rice-dependent countries. Sci Adv 4:eaaq1012. https://doi.org/10.1126/sciadv.aaq1012

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. R. Shivanna .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Shivanna, K.R. (2019). The ‘Sixth Mass Extinction Crisis’ and Its Impact on Flowering Plants. In: Ramawat, K. (eds) Biodiversity and Chemotaxonomy. Sustainable Development and Biodiversity, vol 24. Springer, Cham. https://doi.org/10.1007/978-3-030-30746-2_2

Download citation

Publish with us

Policies and ethics