Skip to main content

Nutrition and Behavioral Health/Mental Health/Neurological Health

  • Chapter
  • First Online:
  • 2671 Accesses

Abstract

The brain, nerves, neurotransmitters, and genes are constantly impacted by numerous micro- and macronutrients. Gene activity may be turned off or on by a vitamin or mineral; nerves and cell membranes are built of essential fatty acids; amino acids are the building blocks of neurotransmitters. Brain structure is 80% lipid, and current evidence and theory indicate, in contrast to the traditional view, that ketones also play vital roles as metabolic and signaling mediators, even when glucose is abundant. It is known that brain, blood, and cell content reflects the nutrient intake from the diet or supplements. There are communication pathways from brain to gut and gut to brain. How could mental processes not be affected by nutritional status? The question asked by nutritionists, molecular biologists, psychiatrists, geneticists, and other scientists is: “How?” Exactly how do nutrients affect these processes, individually or acting together?

The answers are not all in. Some studies focus on mood, which does not necessarily translate into clinical outcomes; epidemiological and tissue studies, meanwhile, struggle to disentangle the respective roles of nutrients in the body or brain. Despite these challenges, we understand the connection between nutrition and mental health more now than in the past. The Nutrition Care Process, more than ever, needs to include assessment of nutritional factors that are influencing mental status.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Puchalska P, Crawford PA. Multi-dimensional roles of ketone bodies in fuel metabolism, signaling, and therapeutics. Cell Metab. 2017;25(2):262–84. https://doi.org/10.1016/j.cmet.2016.12.022.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Koloski NA, Jones M, Talley NJ. Evidence that independent gut-to-brain and brain-to-gut pathways operate in the irritable bowel syndrome and functional dyspepsia: a 1-year population-based prospective study. Aliment Pharmacol Ther. 2016;44(6):592–600. https://doi.org/10.1111/apt.13738.

    Article  CAS  PubMed  Google Scholar 

  3. Lim SY, Kim EJ, Kim A, et al. Nutritional factors affecting mental health. Clin Nutr Res. 2016;5(3):143–52. https://doi.org/10.7762/cnr.2016.5.3.143.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Hallahan B, Ryan T, Hibbeln JR, et al. Efficacy of omega-3 highly unsaturated fatty acids in the treatment of depression. Br J Psychiatry. 2016;209(3):192–201. https://doi.org/10.1192/bjp.bp.114.160242.

    Article  PubMed  Google Scholar 

  5. Parade Publications. What Americans think about aging and health. Parade Magazine. New York, 5 Feb 2006. p. 11.

    Google Scholar 

  6. National Institute of Mental Health (NIH). Serious mental illness (SMI) among U.S. adults. Retrieved from: https://www.nimh.nih.gov/health/statistics/prevalence/serious-mental-illness-smi-among-us-adults.shtml.

  7. National Institute of Mental Health (NIH). Any mental illness (AMI) among U.S. adults. Retrieved from: https://www.nimh.nih.gov/health/statistics/prevalence/any-mental-illness-ami-among-us-adults.shtml.

  8. National Association of Social Workers (NASW). BULLETIN: groundbreaking surgeon general’s report on mental health. Dec 1999. Retrieved from: http://www.naswdc.org/practice/behavioral_health/surgeon_gen.asp.

  9. U.S. Department of Health and Human Services. Mental health: a report of the surgeon general. Rockville, 1999. Retrieved from: https://profiles.nlm.nih.gov/ps/access/NNBBHS.pdf.

  10. Charles B. Nemeroff headlines capitol hill hearings on depression, suicide and opioid addiction. The American College of Neuropsychopharmacology (ACNP) Liaison Committee, co-chaired by Charles B. Nemeroff, M.D., Ph.D., Leonard M. Miller Professor and Chair of the Department of Psychiatry and Behavioral Sciences, presented a briefing on depression and suicide titled “A Precision Medicine Approach to Mental Illness,” at the Congressional Neuroscience Caucus on June 29. Retrieved from: http://med.miami.edu/news/dr.-charles-b.-nemeroff-headlines-capitol-hill-hearings-on-depression-suici.

  11. Nemeroff CB. Psychiatric disorders are brain diseases: the pathway to advancing treatment and eliminating stigma. 2015. http://namiofmiami.org/wp-content/uploads/sites/50/2015/05/Nemeroff-Psychiatric-Disorders-are-Brain-Diseases-NAMI-May-2015-Copy.pdf.

  12. WebMD. What are the types of autism spectrum disorders? Retrieved from: http://www.webmd.com/brain/autism/autism-spectrum-disorders#1.

  13. Nemade R, Dombeck M. Formal DSM schizophrenia spectrum and other psychotic disorders diagnoses. AMHC. http://www.amhc.org/poc/view_doc.php?type=doc&id=8815&cn=7.

  14. Smoller J, Kendler K, Craddock N, Cross-Disorder Group of the Psychiatric Genomics Consortium, et al. Identification of risk loci with shared effects on five major psychiatric disorders: a genome-wide analysis. Lancet. 2013;381(9875):1371–9. Published online 2013 Feb 28. https://doi.org/10.1016/S0140-6736(12)62129-1.

    Article  CAS  Google Scholar 

  15. Jones, JW and Sidwell M. Essential fatty acids and treatment of psychiatric diseases. Orig Internist, Inc. 2001 March, 8:5.

    Google Scholar 

  16. Patrick RP, Ames B. Vitamin D and the omega-3 fatty acids control serotonin synthesis and action, part 2: relevance for ADHD, bipolar disorder, schizophrenia, and impulsive behavior. FASEB J. 2015;29(6):2207–22. https://doi.org/10.1096/fj.14-268342.

    Article  CAS  PubMed  Google Scholar 

  17. Flint J. First robust genetic links to depression emerge. Nature. 2015;523(7560):268–9. Reported by Heidi Ledford.

    Article  CAS  Google Scholar 

  18. Haller J. Biokinetic parameters of vitamins a, B-1, B-2, B-6, E, K and carotene in humans. In: Lieberman HR, Kanarek RB, Prasad C, editors. Nutritional Neuroscience. New York: CRC Taylor and Francis; 2005. p. 229.

    Google Scholar 

  19. Hastings CN, Sheridan H, Pariante CM, Mondelli V. Does diet matter? The use of polyunsaturated fatty acids (PUFAs) and other dietary supplements in inflammation-associated depression. Curr Top Behav Neurosci. 2016;31:321–38. http://www.ncbi.nlm.nih.gov/pubmed/27431396.

    Article  CAS  Google Scholar 

  20. McNamara RK. Detection and treatment of long-chain omega-3 fatty acid deficiency in adolescents with SSRI-resistant major depressive disorder. PharmaNutrition. 2014;2(2):38–46. 49885 (8/2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Kaner G, Soylu M, Yuksel N, et al. Evaluation of nutritional status of patients with depression. Biomed Res Int. 2015;2015:521481. https://doi.org/10.1155/2015/521481.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Sarris J, Murphy J, Mischoulon D, et al. Adjunctive nutraceuticals for depression: a systematic review and meta-analyses. Am J Psychiatry. 2016;173(6):575–87. https://doi.org/10.1176/appi.ajp.2016.15091228.

    Article  PubMed  Google Scholar 

  23. McGuffin P, Rijsdijk F, Andrew M, Sham P, Katz R, Cardno A. The heritability of bipolar affective disorder and the genetic relationship to unipolar depression. Arch Gen Psychiatry. 2003;60:497–502.

    Article  PubMed  Google Scholar 

  24. Demirhan O, Tastemir D, Sertdemir Y. The expression of folate sensitive fragile sites in patients with bipolar disorder. Yonsei Med J. 2009;50(1):137–41.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Ozbeck Z, Kuckkali CI, Ozkok E, Orhan N, Aydin M, Kilic G, Sazci A, Kara I. Effect of the methylenetetrahydrofolate reductase gene polymorphisms on homocysteine, folate and vitamin B12 in patients with bipolar disorder and relatives. Prog Neuro-Psychopharmacol Biol Psychiatry. 2008;32(5):1331–7.

    Article  CAS  Google Scholar 

  26. Evans SJ, Ringrose RN, Harrington GJ, et al. Dietary intake and plasma metabolomic analysis of polyunsaturated fatty acids in bipolar subjects reveal dysregulation of linoleic acid metabolism. J Psychiatr Res. 2014;57:58–64. https://doi.org/10.1016/j.jpsychires.2014.06.001.

    Article  PubMed  Google Scholar 

  27. NYU Langone University. Mental & behavioral health. Retrieved from: http://nyulangone.org/conditions/areas-of-expertise/mental-behavioral-health.

  28. Lopresti AL, Jacka FN. Diet and bipolar disorder: a review of its relationship and potential therapeutic mechanism of action. J Altern Complement Med. 2015;21(12):733–9. https://doi.org/10.1089/acm.2015.0125.

    Article  PubMed  Google Scholar 

  29. Nierenberg AA, Kansky C, Brennan BP, et al. Mitochondrial modulators for bipolar disorder: a pathophysiologically informed paradigm for new drug development. Aust N Z J Psychiatry. 2013;47(1):26–42. https://doi.org/10.1177/0004867412449303. Epub June 18, 2012. http://www.ncbi.nlm.nih.gov/pubmed/22711881.

    Article  PubMed  Google Scholar 

  30. Center for Quality Assessment and Improvement in Mental Health (CQAIMH). Bipolar disorder: monitoring lithium serum levels. Retrieved from: http://www.cqaimh.org/measure_ls.html.

  31. Mota de Freitas D, Castro MM, Geraldes CF. Is competition between Li+ and Mg2+ the underlying theme in the proposed mechanisms for the pharmacological action of lithium salts in bipolar disorder? Acc Chem Res. 2006;39(4):283–91.

    Article  CAS  PubMed  Google Scholar 

  32. Pronsky ZM. Food medication interactions. 15th ed. Birchrunville; 2008. p. 182.

    Google Scholar 

  33. Bauer M, Glenn T, Conell J, et al. Common use of dietary supplements for bipolar disorder: a naturalistic, self-reported study. Int J Bipolar Disord. 2015;3(1):29. https://doi.org/10.1186/s40345-015-0029-x.

    Article  PubMed  Google Scholar 

  34. van Os J. ‘Schizophrenia’ does not exist. BMJ. 2016;352:i375. https://doi.org/10.1136/bmj.i375.

    Article  PubMed  Google Scholar 

  35. Zupanick CE. The new DSM-5: schizophrenia spectrum and other psychotic disorders. Aroostook Mental Health Services. http://www.amhc.org/1418-dsm-5/article/51960-the-new-dsm-5-schizophrenia-spectrum-and-other-psychotic-disorders.

  36. Goff DC, et al. Folate, homocysteine, and negative symptoms in schizophrenia. Am J Psychiatry. 2004;161(9):1,705–8.

    Article  Google Scholar 

  37. Coyle J. Treating the negative symptoms of schizophrenia. Medscape Psychiatry Mental Health. 2006;11(2):2.

    Google Scholar 

  38. Peet M, Laugharne JD, Mellor J, Ramchand CN. Essential fatty acid deficiency in erythrocyte membranes from chronic schizophrenic patients and the clinical effects of dietary supplementation. Prostaglandins Leukot Essent Fat Acids. 1996;55(1–2):71–5.

    Article  CAS  Google Scholar 

  39. Bentsen H, Osnes K, Refsum H, Solberg DK, Bøhmer T. A randomized placebo-controlled trial of an omega-3 fatty acid and vitamins E+C in schizophrenia. Transl Psychiatry. 2013;3:e335. https://doi.org/10.1038/tp.2013.110.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Henderson D, Borba C, Daley T, Boxill R, Nguyen D, Culhane M, Louie P, Cather C, Evins AE, Freudenreich O, Taber S, Goff D. Dietary intake profile of patients with schizophrenia. Ann Clin Psychiatry. 2006;18(2):99–105.

    Article  PubMed  Google Scholar 

  41. Mansur RD, Santos CM, Rizzo LB, et al. Brain-derived neurotrophic factor, impaired glucose metabolism and bipolar disorder course. Bipolar Disorder. 2016;18(4):373–8. https://doi.org/10.1111/bdi.12399.

    Article  CAS  Google Scholar 

  42. Jackson JR, Eaton WW, Cascella NG, Fasano A, Kelly DL. Neurologic and psychiatric manifestations of celiac disease and gluten sensitivity. Psychiatry Q. 2012;83(1):91–102. https://doi.org/10.1007/s11126-011-9186-y.

    Article  Google Scholar 

  43. Bly MJ, Taylor SF, Dalack G, et al. Metabolic syndrome in bipolar disorder and schizophrenia: dietary and lifestyle factors compared to the general population. Bipolar Disord. 2014;16(3):277–88. https://doi.org/10.1111/bdi.12160. Epub Dec 13, 2013. http://www.ncbi.nlm.nih.gov/pubmed/24330321.

    Article  PubMed  Google Scholar 

  44. Silarova B, Giltay EJ, Dortland AVR, et al. Metabolic syndrome in patients with disorder: comparison with major depressive disorder and non-psychiatric control. J Psychosom Res. 2015;78(4):391–8. https://doi.org/10.1016/j.jpsychores.2015.02.010.

    Article  PubMed  Google Scholar 

  45. Lisi Donna M. Diabetes and the psychiatric patient. U.S. Pharmacist. Oct 2016. Medscape. http://www.medscape.com/viewarticle/733705_6.

  46. Nasrallah HA. Why are metabolic monitoring guidelines being ignored? Curr Psychiatr Ther. 2012;11(12):4–5. http://www.currentpsychiatry.com/home/article/why-are-metabolic-monitoring-guidelines-being-ignored/6ed39aa482a23d88a558bc0350ff7095.html.

    Google Scholar 

  47. Schmitz N, Deschênes SS, Burns RJ, et al. Depression and risk of type 2 diabetes: the potential role of metabolic factors. Mol Psychiatry. 2016;21(12):1726–173. http://www.nature.com/mp/journal/vaop/ncurrent/full/mp20167a.html.

    Article  CAS  PubMed  Google Scholar 

  48. Daumit GL, Dickerson FB, Wang N-Y, et al. A behavioral weight-loss intervention in persons with serious mental illness. New EngJ Med. 2013;368:1594–602.

    Article  CAS  Google Scholar 

  49. Foster GD, Makris AP, Bailer BA. Behavioral treatment of obesity. Am J Clin Nutr. 2005;82(Suppl):230S–5S. http://ajcn.nutrition.org/content/82/1/230S.full.pdf+html.

    Article  CAS  PubMed  Google Scholar 

  50. Merck Manual (Professional Version). Hyponatremia. Retrieved from: http://www.merckmanuals.com/professional/endocrine-and-metabolic-disorders/electrolyte-disorders/hyponatremia.

  51. Yew D. Caffeine toxicity. June 6, 2017. Medscape. Retrieved from: http://emedicine.medscape.com/article/821863-overview.

  52. Wang HR, Woo Y, Bahk WM. Caffeine-induced psychiatric manifestations: a review. Int Clin Psychopharmacol. 2015;30(4):179–82.

    Article  PubMed  Google Scholar 

  53. Hedges DW, Woon FL, Hoopes SP. Caffeine-induced psychosis. CNS Spectr. 2009;24(3):127–9.

    Article  Google Scholar 

  54. European Food Safety Authority report on caffeine. Published: May 27, 2015. http://www.efsa.europa.eu/en/efsajournal/pub/4102.htm.

  55. Harrison-Dunn A-R. EFSA: 400mg of caffeine a day is safe. NUTRAingredients.com, 16 Jan 2015. Retrieved from: http://www.nutraingredients.com/Regulation-Policy/EFSA-400mg-of-caffeine-a-day-is-safe?utm_source=newsletter_special_edition&utm_medium=email&utm_campaign=16-Jan-2015.

  56. Cook JT, Frank DA. Food security, poverty, and human development in the United States. Ann N Y Acad Sci. 2008;1136:193–209. https://doi.org/10.1196/annals.1425.001.

    Article  PubMed  Google Scholar 

  57. Alaimo K, Olson CM, Frongillo EA. Family food insufficiency, but not low family income, is positively associated with dysthymia and suicide symptoms in adolescents. J Nutr. 2002;132(4):719–25.

    Article  CAS  PubMed  Google Scholar 

  58. U.S. Department of Health and Human Services, U.S. Department of Agriculture. 2015–2020 dietary guidelines for Americans. 8th Edition. 2015. Dietary intakes compared to recommendations. Percent of the U.S. population ages 1 year & older who are below, at, or above each dietary goal or limit. Chapter 2, Figure 2-1: page 39. https://health.gov/dietaryguidelines/2015/resources/2015-2020_Dietary_Guidelines.pdf.

  59. Messamore E, McNamara RK. Detection and treatment of omega-3 fatty acid deficiency in psychiatric practice: rationale and implementation. Lipids Health Dis. 2016;15:25. https://doi.org/10.1186/s12944-016-0196-5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Hibbeln J. Brain futures 2015. Modern fats and the modern mind. Mental Health Assoc of Maryland. https://www.brainfutures2015.org/wp-content/uploads/2015/12/Hibbeln-Joseph-4.pdf.

  61. Appleton KM, Sallis HM, Perry R, et al. Omega-3 fatty acids for depression in adults. Cochrane Database Syst Rev. 2015;11:CD004692. https://doi.org/10.1002/14651858.CD004692.pub4.

    Article  Google Scholar 

  62. McNamara RK, Strawn JR. Role of long-chain omega-3 fatty acids in psychiatric practice. PharmaNutrition. 2013;1(2):41–9. https://doi.org/10.1016/j.phanu.2012.10.004.

    Article  CAS  PubMed  Google Scholar 

  63. Su K-P, Lai H-C, Yang H-T, et al. Omega-3 fatty acids in the prevention of interferon-alpha-induced depression: results from a randomized, controlled trial. Biol Psychiatry. 2014;76(7):559–66. https://doi.org/10.1016/j.biopsych.2014.01.008.

    Article  CAS  PubMed  Google Scholar 

  64. Pottala J, Yaffe K, Robinson JG, et al. Omega-3 fatty acids linked to brain volume. Neurology. 22 Jan 2014. http://www.medscape.com/viewarticle/819632, https://doi.org/10.1212/WNL.0000000000000080.

  65. Freeman MP, et al. Omega-3 fatty acids: evidence basis for treatment and future of research in psychiatry. J Clin Psychiatry. 2006;67(12):1954–67.

    Article  CAS  PubMed  Google Scholar 

  66. Martins JG. EPA but not DHA appears to be responsible for the efficacy of omega-3 long chain polyunsaturated fatty acid supplementation in depression: evidence from a meta-analysis of randomized controlled trials. Am Coll Nutr. 2009;28(5):525–42.

    Article  CAS  Google Scholar 

  67. Kane E. The remarkable 4:1 fatty acid ratio and the brain. BodyBio Bulletin. Apr 2015. http://www.bodybio.com/BodyBio/docs/Remarkable-FattyAcid.pdf.

  68. Yurko-Mauro K, Kralovec J, Hall EB, et al. Similar eicosapentaenoic acid and docosahexaenoic acid plasma levels achieved with fish oil or krill oil in a randomized double-blind four-week bioavailability study. Lipids Health Dis. 2015;14:99. http://www.lipidworld.com/content/14/1/99. https://doi.org/10.1186/s12944-015-0109-z.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Zhang J, Liu Q. Cholesterol metabolism and homeostasis in the brain. Protein Cell. 2015;6(4):254–64. https://doi.org/10.1007/s13238-014-0131-3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Vance JE. Dysregulation of cholesterol balance in the brain: contribution to neurodegenerative diseases. Dis Model Mech. 2012;5:746–55. https://doi.org/10.1242/dmm.010124.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Saunders EF, Reider A, Singh G, et al. Low unesterified:esterified eicosapentaenoic acid (EPA) plasma concentration ratio is associated with bipolar disorder episodes, and omega-3 plasma concentrations are altered by treatment. Bipolar Disord. 2015;17(7):729–42. https://doi.org/10.1111/bdi.12337. Epub Oct 1, 2015. http://www.ncbi.nlm.nih.gov/pubmed/26424416.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Troisi A. Low cholesterol is a risk factor for attentional impulsivity in patients with mood symptoms. Psychiatry Res. 2011;188(1):83–7.

    Article  CAS  PubMed  Google Scholar 

  73. Boscarino J, Erlich PM, Hoffman SN. Low serum cholesterol and external-cause mortality: potential implications for research and surveillance. J Psychiatr Res. 2009;43(9):848–54.

    Article  PubMed  Google Scholar 

  74. Morgan RE, Palinkas LA, Barrett-Connor EL, Wingard DL. Plasma cholesterol and depressive symptoms in older men. Lancet. 1993;341:75–9.

    Article  CAS  PubMed  Google Scholar 

  75. Persons JE, Robinson JG, Coryell WH, et al. Longitudinal study of low serum LDL cholesterol and depressive symptom onset in postmenopause. J Clin Psychiatry. 2016;77(2):212–20. https://doi.org/10.4088/JCP.14m09505.

    Article  PubMed  PubMed Central  Google Scholar 

  76. Best J, Nijhout HF, Reed M. Serotonin synthesis, release and reuptake in terminals: a mathematical model. Theor Biol Med Model. 2010;7:34. https://doi.org/10.1186/1742-4682-7-34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Voruganti LN, Awad AG. Subjective and behavioural consequences of striatal dopamine depletion in schizophrenia – findings from an in vivo SPECT study. Schizophr Res. 2006;88(1–3):179–86.

    Article  PubMed  Google Scholar 

  78. Brown RD, Stevens DR, Haas HL. The physiology of brain histamine. Prog Neurobiol. 2001;63(6):637–72.

    Article  CAS  PubMed  Google Scholar 

  79. Passani M, Pertti Panula B, Lin J-S. Histamine in the brain. Front Syst Neurosci. 2014;8:64. https://doi.org/10.3389/fnsys.2014.00064.

    Article  PubMed  PubMed Central  Google Scholar 

  80. Ichikawa A, Tanaka S. Histamine biosynthesis and function. 2012. Wiley Online Library doi: https://doi.org/10.1002/9780470015902.a0001404.pub2

  81. Leyse-Wallace R. “Nutrition and the brain/CNS”. Brain data and dogma: expanding MNT to increase fiscal reimbursement. Handout for the Pre-FNCE Workshop of the Behavioral Health Nutrition Dietetics Practice Group of the Academy of Nutrition and Dietetics; Oct 2015. Nashville.

    Google Scholar 

  82. WebMD. High blood sugar and diabetes. Retrieved from: http://www.webmd.com/diabetes/guide/diabetes-hyperglycemia.

  83. Smith AD, Smith SM, de Jager CA, Whitbread P, Johnston C, et al. Homocysteine-lowering by B vitamins slows the rate of accelerated brain atrophy in mild cognitive impairment: a randomized controlled trial. PLoS One. 2010;5(9):e12244. https://doi.org/10.1371/journal.pone.0012244.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. McCormick LM, Buchanan JR, Onwuameze OE, et al. Beyond alcoholism: Wernicke-Korsakoff syndrome in patients with psychiatric disorders. Cogn Behav Neurol. 2011;24(4):209–16. https://doi.org/10.1097/WNN.0b013e31823f90c4.

    Article  PubMed  PubMed Central  Google Scholar 

  85. Scalzo SJ, Bowden SC, Ambrose ML, et al. Wernicke-Korsakoff syndrome not related to alcohol use: a systematic review. J Neurol Neurosurg Psychiatry. 2015;86(12):1362–8. https://doi.org/10.1136/jnnp-2014-309598.

    Article  PubMed  Google Scholar 

  86. Isenberg-Grzeda E, Alici Y, Hatzoglou V, et al. Nonalcoholic thiamine-related encephalopathy (Wernicke-Korsakoff syndrome) among inpatients with cancer: a series of 18 cases. Psychosomatics. 2016;57(1):71–81. https://doi.org/10.1016/j.psym.2015.10.001.

    Article  PubMed  Google Scholar 

  87. Wijnia JW, Oudman E, Bresser EL, et al. Need for early diagnosis of mental and mobility changes in Wernicke encephalopathy. Cogn Behav Neurol. 2014;27(4):215–21. https://doi.org/10.1097/WNN.0000000000000041.

    Article  PubMed  Google Scholar 

  88. Thomson AD, Guerrini I, Marshall EJ. The evolution and treatment of Korsakoff’s syndrome: out of sight, out of mind? Neuropsychol Rev. 2012;22(2):81–92. https://doi.org/10.1007/s11065-012-9196-z.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Lonsdale D. Thiamine and magnesium: keys to disease. Med Hypotheses. 2015;84:129–34.

    Article  CAS  PubMed  Google Scholar 

  90. Kowalska E, Kozik A. The genes and enzymes involved in the biosynthesis of thiamin and thiamin diphosphate in yeasts. Cell Mol Biol Lett. 2008;13(2):271–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. GB HealthWatch. Thiamin. Retrieved from: https://www.gbhealthwatch.com/Nutrient-Thiamin-Genes.php.

  92. Petrovski S, Shashi V, Petrou S, et al. Exome sequencing results in successful riboflavin treatment of a rapidly progressive neurological condition. Cold Spring Harb Mol Case Stud. 2015;1:a000257. https://doi.org/10.1101/mcs.a000257.

    Article  PubMed  PubMed Central  Google Scholar 

  93. Kennedy DO. B vitamins and the brain: mechanisms, dose and efficacy—a review. Nutrients. 2016;8:68. https://doi.org/10.3390/nu8020068.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Oldham MA, Ivkovic A. Pellagrous encephalopathy presenting as alcohol withdrawal delirium: a case series and literature review. Addict Sci Clin Pract. 2012;7:12. http://www.ascpjournal.org/content/7/1/12.

    Article  PubMed  PubMed Central  Google Scholar 

  95. Skarupski KA, Tangney C, Li H, et al. Longitudinal association of vitamin B-6, folate, and vitamin B-12 with depressive symptoms among older adults over time. Amer J Clin Nutr. 2010;92(2):269–70.

    Article  CAS  Google Scholar 

  96. Moorthy D, Peter I, Scott TM, et al. Status of vitamins B-12 and B-6 but not of folate, homocysteine, and the methylenetetrahydrofolate reductase C677T polymorphism are associated with impaired cognition and depression in adults. J Nutr. 2012;142(8):1554–60. https://doi.org/10.3945/jn.112.161828.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. CDC. Second national report on biochemical indicators of diet and nutrition in the US population. Hyattsville: U S Department of Health and Human Services, Centers for Disease Control and Prevention; 2012.

    Google Scholar 

  98. Morris MS, Picciano MF, Jacques PF, Selhub J. Plasma pyridoxal 5-phosphate in the US population: the National Health and Nutrition Examination Survey, 2003–2004. Am J Clin Nutr. 2008;87(5):1446–54.

    Article  CAS  PubMed  Google Scholar 

  99. Delage B (updating author), Gregory JF (reviewer). Vitamin B-6. Linus Pauling Institute Micronutrient Information Center. Oregon State University. 2014. http://lpi.oregonstate.edu/mic/vitamins/vitamin-B6.

  100. Ramsey D. Vitamin deficiencies and mental health: how are they linked? Curr Psychiatr Ther. 2013;12(1):37–44.

    Google Scholar 

  101. Grober U, Kisters K, Schmidt J. Neuroenhancement with vitamin B12—Underestimated neurological significance. Nutrients. 2013;5(12):5031–45. https://doi.org/10.3390/nu5125031.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. National Institutes of Health (NIH). Vitamin B12. https://ods.od.nih.gov/factsheets/VitaminB12-HealthProfessional/ updated 2/11/16.

  103. Araujp DA, Noronha MB, Cunha NA, et al. Low serum levels of vitamin B12 in older adults with normal nutritional status by mini nutritional assessment. Eur J Clin Nutr. 2016;70(7):859–62. https://doi.org/10.1038/ejcn.2016.33.

    Article  CAS  Google Scholar 

  104. Edney LC, Burns NR, Danthiir V. Subjective well-being in older adults: folate and vitamin B12 independently predict positive affect. Br J Nutr. 2015;114(8):1321–8. https://doi.org/10.1017/S0007114515002949.

    Article  CAS  PubMed  Google Scholar 

  105. Kinsman RA, Hood J. Some behavioral effects of ascorbic acid deficiency. Am J Clin Nutr. 1971;24:455–64.

    Article  CAS  PubMed  Google Scholar 

  106. Report of the dietary guidelines advisory committee on the dietary guidelines for Americans, 2010 section D2–23. Retrieved from: http://www.cnpp.usda.gov/DGAs2010-DGACReport.htm.

  107. Wang Y, Liu XJ, Robotaille L, et al. Effects of vitamin C and vitamin D administration on mood and distress in acutely hospitalized patients. Am J Clin Nutr. 2013;98(3):705–11. https://doi.org/10.3945/ajcn.112.056366.

    Article  CAS  PubMed  Google Scholar 

  108. Andre R, Gabielli A, Laffitte E, Kherad O. Atypical scurvy associated with anorexia nervosa. Ann Dermatol Venereol. 2016;144(2):125–9. pii: S0151-9638(16)30324-6. https://doi.org/10.1016/j.annder.2016.06.005.

    Article  PubMed  Google Scholar 

  109. Christopher K, Tammaro D, Wing EJ. Early scurvy complicating anorexia nervosa. South Med J. 2002;95(9):1065–6.

    Article  PubMed  Google Scholar 

  110. Strumia R. Dermatologic signs in patients with eating disorders. Am J Clin Dermatol. 2005;6(3):165–73.

    Article  PubMed  Google Scholar 

  111. Phillipp E, Pirke K-M, Seidl M, Tuschl RJ, Fichter MM, Eckert M, Wolfram G. Vitamin status in patients with anorexia nervosa and bulimia nervosa. Int J Eat Disord. 1988;8(2):209–18.

    Article  Google Scholar 

  112. Davison KM, Kaplan BJ. Food insecurity in adults with mood disorders: prevalence estimates and associations with nutritional and psychological health. Ann General Psychiatry. 2015;14:21. https://doi.org/10.1186/s12991-015-0059-x.

    Article  Google Scholar 

  113. Shaghaghi MA, Kloss O, Eck P. Genetic variation in human vitamin C transporter genes in common complex diseases. Adv Nutr. 2016;7:287–98.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Herbert V. Experimental nutritional folate deficiency in man. Trans Assoc Am Physicians. 1962;75:307–20.

    CAS  PubMed  Google Scholar 

  115. Thornton WE, Thornton BP. Folic acid, mental function and dietary habits. J Clin Psychiatry. 1978;39(4):315–22.

    CAS  PubMed  Google Scholar 

  116. Melong J, Gardner D. Women with depression should be offered folic acid. Can Fam Physician. 2011;57(9):993–6. http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3173416/.

    PubMed  PubMed Central  Google Scholar 

  117. Coppen A, Bailey J. Enhancement of the antidepressant action of fluoxetine by folic acid: a randomised, placebo controlled trial. J Affect Disord. 2000;60(2):121–30.

    Article  CAS  PubMed  Google Scholar 

  118. Ginsberg LD. L-methylfolate effective in the treatment of a MDD. APA 2010, Poster NR3–46. Psychiatric Dispatches: News from the 163rd Annual Meeting of the American Psychiatric Association. Primary Psychiatry. July 1, 2010.

    Google Scholar 

  119. RxList. Folic acid. Retrieved from: http://www.rxlist.com/folic_acid/supplements.htm.

  120. Roffman JL, Lamberti JS, Achtyes E, et al. Randomized multicenter investigation of folate plus vitamin B12 supplementation in schizophrenia. JAMA Psychiat. 2013;70(5):481–9. https://doi.org/10.1001/jamapsychiatry.2013.900.

    Article  CAS  Google Scholar 

  121. Ransom J, Morgan PJ, McCaffery PJ, Stoney PN. The rhythm of retinoids in the brain. J Neurochem. 2014;129(3):366–76. https://doi.org/10.1111/jnc.12620.

    Article  CAS  PubMed  Google Scholar 

  122. Bremner J. Douglas and Peter McCaffery. The neurobiology of retinoic acid in affective disorders. Prog Neuro-Psychopharmacol Biol Psychiatry. 2008;32(2):315–31. https://doi.org/10.1016/j.pnpbp.2007.07.001.

    Article  CAS  Google Scholar 

  123. Alzoubi KH, OF Khabour, Hassan RE, et al. The effect of genetic polymorphisms of RARA gene on the adverse effects profile of isotretinoin-treated acne patients. Int J Clin Pharmacol Ther. 2013;51(8):631–40. https://doi.org/10.5414/CP201874.

    Article  CAS  PubMed  Google Scholar 

  124. Nerhus M, Berg AO, Dahl SR, et al. Vitamin D status in psychotic disorder patients and healthy controls--The influence of ethnic background. Psychiatry Res. 2015;230(2):616–21. https://doi.org/10.1016/j.psychres.2015.10.015.

    Article  CAS  PubMed  Google Scholar 

  125. Graham KA, Keefe RS, Lieberman JA, Calikoglu AS, Lansing KM, Perkins DO. Relationship of low vitamin D status with positive, negative and cognitive symptom domains in people with first-episode schizophrenia. Early Interv Psychiatry. 2015;9:397–405.

    Article  CAS  PubMed  Google Scholar 

  126. Crews M, Lally J, Gardner-Sood P, et al. Vitamin D deficiency in first episode psychosis: a case-control study. Schizophr Res. 2013;150(2–3):533–7. https://doi.org/10.1016/j.schres.2013.08.036.

    Article  PubMed  Google Scholar 

  127. Belvederi Murri M, Respino M, Masotti M, et al. Vitamin D and psychosis: mini meta-analysis. Schizophr Res. 2013;150(1):235–9. https://doi.org/10.1016/j.schres.2013.07.017.

    Article  PubMed  Google Scholar 

  128. Sepehrmanesh Z, Kolahdooz F, Abedi F, et al. Vitamin D supplementation affects the beck depression inventory, insulin resistance, and biomarkers of oxidative stress in patients with major depressive disorder: a randomized, controlled clinical trial. J Nutr. 2015;146(2):243–8. https://doi.org/10.3945/jn.115.218883.

    Article  CAS  PubMed  Google Scholar 

  129. Grudet C, Malm J, Westrin A, Brundin L. Suicidal patients are deficient in vitamin D, associated with a pro-inflammatory status in the blood. Psychoneuroendocrinology. 2014;50:210–9. https://doi.org/10.1016/j.psyneuen.2014.08.016.

    Article  CAS  PubMed  Google Scholar 

  130. Kerr DCR, Zava DT, Piper WT, et al. Associations between vitamin D levels and depressive symptoms in healthy young adult women. Psychiatric Res. 2015;227(1):46–51.

    Article  CAS  Google Scholar 

  131. Chiang M, Natarajan R, Fan X. Vitamin D in schizophrenia: a clinical review. Evid Based Ment Health. 2016;19(1):6–9.

    Article  PubMed  Google Scholar 

  132. Christopher BJ. Nutrification of Foods. In: Shils ME, Olson JA, Shike M, editors. Modern nutrition in health and disease. Philadelphia: Lea and Febiger; 1994. 1,582.

    Google Scholar 

  133. Krishnamoorthy L, Cotruvo JA, Chan J, et al. Copper regulates cyclic-AMP-dependent lipolysis. Nat Chem Biol. 2016;12(8):586–92. https://doi.org/10.1038/nchembio.2098.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Desai V, Kaler SG. An increased concentration of copper in cerebrospinal fluid with normal plasma copper concentrations has been noted in some patients with Alzheimer disease: role of copper in human neurological disorders. J Clin Nutr. 2008;88(suppl):855S–8S.

    Article  CAS  Google Scholar 

  135. Walsh WJ. Nutrient power: heal your biochemistry and heal your brain. New York: Skyhorse Publishing; 2012. p. 18–20; 141.

    Google Scholar 

  136. Khera D, Sharma B, Singh K. Copper deficiency as a cause of neutropenia in a case of coeliac disease. BMJ Case Rep. 2016;15:2016. https://doi.org/10.1136/bcr-2016-214874.

    Article  Google Scholar 

  137. Kraszewska A, Chlopocka-Wozniak M, Abramowicz M, et al. A cross-sectional study of thyroid function in 66 patients with bipolar disorder receiving lithium for 10-44 years. Bipolar Disord. 2014;17(4):375–80. https://doi.org/10.1111/bdi.12275.

    Article  CAS  PubMed  Google Scholar 

  138. Devkota BP. Magnesium. 2014. Medscape. Retrieved from: http://emedicine.medscape.com/article/2088140-overview#a2.

  139. Manganese. Micronutrient information Center. Linus Pauling Institute. Oregon State University. Reviewed in 2010 by Michael Aschner and Gray EB Stahlman. http://lpi.oregonstate.edu/mic/minerals/manganese

  140. Claro da Silva T, Hiller C, Gai Z, Kullak-Ublick GA. Vitamin D3 transactivates the zinc and manganese transporter SLC30A10 via the vitamin D receptor. J Steroid Biochem Mol Biol. 2016;163:77–87. https://doi.org/10.1016/j.jsbmb.2016.04.006.

    Article  PubMed  Google Scholar 

  141. Banikazemi Z, Mirzaei H, Mokhber N, Mobarhan MG. Selenium intake is related to beck’s depression score. Iran Red Crescent Med J. 2016;18(3):e21993. https://doi.org/10.5812/ircmj.2199.

    Article  PubMed  PubMed Central  Google Scholar 

  142. Cai L, Chen T, Yang J, et al. Serum trace element differences between schizophrenia patients and controls in the Han Chinese population. Sci Rep. 2015;5:15013. https://doi.org/10.1038/srep15013. www.nature.com/scientificreports/.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. National Institutes of Health (NIH). Selenium. Retrieved from: https://ods.od.nih.gov/factsheets/Selenium-HealthProfessional/.

  144. Cardoso BR, Busse AL, Hare DJ, et al. Pro198Leu polymorphism affects the selenium status and GPx activity in response to Brazil nut intake. Food Funct. 2016;7(2):825–33. https://doi.org/10.1039/c5fo01270h.

    Article  CAS  PubMed  Google Scholar 

  145. Karunasinghe N, Han DY, Zhu S. Serum selenium and single-nucleotide polymorphisms in genes for selenoproteins: relationship to markers of oxidative stress in men from Auckland, New Zealand. Genes Nutr. 2012;7(2):179–90. https://doi.org/10.1007/s12263-011-0259-1.

    Article  CAS  PubMed  Google Scholar 

  146. Nuttall KL. Evaluating selenium poisoning. Ann Clin Lab Sci. 2006;36(4):409–20.

    CAS  PubMed  Google Scholar 

  147. Cope EC, Levenson CW. Role of zinc in the development and treatment of mood disorders. Curr Opin Clin Nutr Metab Care. 2010;13(6):685–9. https://doi.org/10.1097/MCO.0b013e32833df61a.

    Article  CAS  PubMed  Google Scholar 

  148. Wu X, Cobbina SJ, Mao G, et al. A review of toxicity and mechanisms of individual and mixtures of heavy metals in the environment. Environ Sci Pollut Res Int. 2016;23(9):8244–59. https://doi.org/10.1007/s11356-016-6333-x.

    Article  CAS  PubMed  Google Scholar 

  149. Min J-Y, Min K-B. Blood cadmium levels and Alzheimer’s disease mortality risk in older US adults. Environ Health. 2016;15(1):69. https://doi.org/10.1186/s12940-016-0155-7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. International Cadmium Association (ICdA). Cadmium exposure and human health. Retrieved from: http://www.cadmium.org/environment/cadmium-exposure-and-human-health.

  151. Consortium for Interdisciplinary Environmental Research. Information sources for health professionals. Stony Brook University, StonyBrook, New York. http://www.stonybrook.edu/commcms/gelfond/physicians/info.html.

  152. Rooney JP. The retention time of inorganic mercury in the brain – a systematic review of the evidence. Toxicol Appl Pharmacol. 2014;274(3):425–35. https://doi.org/10.1016/j.taap.2013.12.011.

    Article  CAS  PubMed  Google Scholar 

  153. Saper RB, Kales SN, Paquin J, et al. Heavy metal content of ayurvedic herbal medicine products. JAMA. 2004;292(23):2868–73.

    Article  CAS  PubMed  Google Scholar 

  154. Hightower JM, Moore D. Mercury levels in high-end consumers of fish. Environ Health Perspect. 2003;111(4):604–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Consumer Reports. Choose the right fish to lower mercury risk exposure. Aug 2014. Retrieved from: http://www.consumerreports.org/cro/magazine/2014/10/can-eating-the-wrong-fish-put-you-at-higher-risk-for-mercury-exposure/index.htm.

  156. Pronsky ZM. Food medication interactions. 15th ed. Birchrunville: Food Medication Interactions; 2008.

    Google Scholar 

  157. Lasslo-Meeks M. Weight gain liabilities of psychotropic and seizure disorder medications. SCAN’s Pulse. 2003;22(2):7–12. SCAN is a Practice Group of The Academy of Nutrition and Dietetics.

    Google Scholar 

  158. Schwartz TL, Meszaros ZA, Khan R, Nihalani N. How to control weight gain when prescribing antidepressants. Curr Psychiatr Ther. 2007;6(5):43–53. http://www.currentpsychiatry.com/home/article/how-to-control-weight-gain-when-prescribing-antidepressants/409757c0a7b3e1e2a0adc3d31cd13e52.html.

    Google Scholar 

  159. University of Maryland Medical Center. Vitamin B6 (Pyridoxine). Retrieved from: http://umm.edu/health/medical/altmed/supplement/vitamin-b6-pyridoxine.

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Leyse Wallace, R. (2020). Nutrition and Behavioral Health/Mental Health/Neurological Health. In: Noland, D., Drisko, J., Wagner, L. (eds) Integrative and Functional Medical Nutrition Therapy. Humana, Cham. https://doi.org/10.1007/978-3-030-30730-1_29

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-30730-1_29

  • Published:

  • Publisher Name: Humana, Cham

  • Print ISBN: 978-3-030-30729-5

  • Online ISBN: 978-3-030-30730-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics