Skip to main content

The Microbiome and Brain Health

  • Chapter
  • First Online:
Integrative and Functional Medical Nutrition Therapy

Abstract

The gut microbiome is an emerging field in medicine. A large body of research supports the pathways of communication between the gut and the brain, relationships that are significantly impacted by the gut microbiome and probiotics. Through these pathways, the microbiota can influence brain function, neuroplasticity, and cognitive function in aging and neurodegeneration.

Understanding the complexities and regulation of the gut-brain microbiome relationship identifies key factors in brain health. The bidirectional communication influences inflammation and mental, emotional, and physical disorders.

Identifying the interactions of the central nervous system, enteric nervous system, and the immune system can significantly improve our understanding and options for treatment as it impacts psychological disorders, neurological conditions, and the aging brain.

Limitations in the current research, such as how the data from animal studies may or may not correlate in human populations, necessitate further investigation, particularly as it relates to brain health. All in all, it is probable that the microbiota profile is a useful indicator of health and environmental history of a person and that it may play a role in disease process and treatment response.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. MacGill, Markus. Gut microbiota: definition, importance, and medical uses. Medical News Today, MediLexicon International, 26 June 2018. www.medicalnewstoday.com/articles/307998.php.

  2. Backhed F, Ley RE, Sonnenburg JL, Peterson DA, Gordon JI. Host-bacterial mutualism in the human intestine. Science. 1915–1920;2005:307.

    Google Scholar 

  3. Backhed F, Roswall J, Peng Y, Feng Q, Jia H, Kovatcheva-Datchary P. Dynamics and stabilization of the human gut microbiome during the first year of life. Cell Host Microbe. 2015;17:690.

    Article  CAS  PubMed  Google Scholar 

  4. Bull MJ, Plummer NT. Part 1: the human gut microbiome in health and disease. Integr Med A Clin J. 2014;13(6):17–22.

    Google Scholar 

  5. Eckburg PB, Bik EM, Bernstein CN, et al. Diversity of the human intestinal microbial flora. Science. 2005;308(5728):1635–8.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Campbell AW. Your gut: no, not that one, this one. Alt Ther Health Med. 2014;20(2):9–10.

    Google Scholar 

  7. Tappenden KA, Deutsch AS. The physiological relevance of the intestinal microbiota—contributions to human health. J Am Coll Nutr. 2007;26(6):679S–83S.

    Article  PubMed  Google Scholar 

  8. Khanna S, Tosh PK. A clinician’s primer on the role of the microbiome in human health and disease. Mayo Clin Proc. 2014;89:107–14.

    Article  CAS  PubMed  Google Scholar 

  9. Maes M, Kubera M, Leunis JC, Berk M, Geffard M, Bosmans E. In depression, bacterial translocation may drive inflammatory responses, oxidative and nitrosative stress (O&NS), and autoimmune responses directed against O&NS-damaged neoepitopes. Acta Psychiatr Scand. 2013;127:344–54.

    Article  CAS  PubMed  Google Scholar 

  10. Maes M, Kubera M, Leunis JC, Berk M. Increased IgA and IgM responses against gut commensals in chronic depression: further evidence for increased bacterial translocation or leaky gut. J Affect Disord. 2012;141:55–62.

    Article  CAS  PubMed  Google Scholar 

  11. Maes M, Kubera M, Leunis JC. The gut-brain barrier in major depression: intestinal mucosal dysfunction with an increased translocation of LPS from gram negative enterobacteria (leaky gut) plays a role in the inflammatory pathophysiology of depression. Neuro Endocrinol Lett. 2008;29:117–24.

    PubMed  Google Scholar 

  12. Alonso C, Guilarte M, Vicario M, Ramos L, Rezzi S, Martínez C, Lobo B, Martin FP, Pigrau M, González-Castro AM, Gallart M, Malagelada JR, Azpiroz F, Kochhar S, Santos J. Acute experimental stress evokes a differential gender-determined increase in human intestinal macromolecular permeability. Neurogastroenterol Motil. 2012;24:740–6.

    Article  CAS  PubMed  Google Scholar 

  13. van Wijck K, Lenaerts K, Grootjans J, Wijnands KA, Poeze M, van Loon LJ, Dejong CH, Buurman WA. Physiology and pathophysiology of splanchnic hypoperfusion and intestinal injury during exercise: strategies for evaluation and prevention. Am J Physiol Gastrointest Liver Physiol. 2012;303:G155–68.

    Article  CAS  PubMed  Google Scholar 

  14. Li X, Kan EM, Lu J, Cao Y, Wong RK, Keshavarzian A, Wilder-Smith CH. Combat-training increases intestinal permeability, immune activation and gastrointestinal symptoms in soldiers. Aliment Pharmacol Ther. 2013;37:799–809.

    Article  CAS  PubMed  Google Scholar 

  15. Cani PD, Neyrinck AM, Fava F, Knauf C, Burcelin RG, Tuohy KM, Gibson GR, Delzenne NM. Selective increases of bifidobacteria in gut microflora improve high-fat-diet-induced diabetes in mice through a mechanism associated with endotoxaemia. Diabetologia. 2007;50:2374–83.

    Article  CAS  PubMed  Google Scholar 

  16. Cani PD, Amar J, Iglesias MA, Poggi M, Knauf C, Bastelica D, Neyrinck AM, Fava F, Tuohy KM, Chabo C, Waget A, Delmée E, Cousin B, Sulpice T, Chamontin B, Ferrières J, Tanti JF, Gibson GR, Casteilla L, Delzenne NM, Alessi MC, Burcelin R. Metabolic endotoxemia initiates obesity and insulin resistance. Diabetes. 2007;56:1761–72. https://doi.org/10.2337/db06-1491. [PubMed] [Cross Ref].

    Article  CAS  PubMed  Google Scholar 

  17. Reichenberg A, Yirmiya R, Schuld A, Kraus T, Haack M, Morag A, Pollmächer T. Cytokine-associated emotional and cognitive disturbances in humans. Arch Gen Psychiatry. 2001;58:445–52. https://doi.org/10.1001/archpsyc.58.5.445. [PubMed] [Cross Ref].

    Article  CAS  PubMed  Google Scholar 

  18. Prager G, Hadamitzky M, Engler A, Doenlen R, Wirth T, Pacheco-López G, Krügel U, Schedlowski M, Engler H. Amygdaloid signature of peripheral immune activation by bacterial lipopolysaccharide or staphylococcal enterotoxin B. J Neuroimmune Pharmacol. 2013;8:42–50.

    Article  PubMed  Google Scholar 

  19. Grigoleit JS, Kullmann JS, Wolf OT, Hammes F, Wegner A, Jablonowski S, Engler H, Gizewski E, Oberbeck R, Schedlowski M. Dose-dependent effects of endotoxin on neurobehavioral functions in humans. PLoS One. 2011;6:e28330.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Kullmann JS, Grigoleit JS, Lichte P, Kobbe P, Rosenberger C, Banner C, Wolf OT, Engler H, Oberbeck R, Elsenbruch S, Bingel U, Forsting M, Gizewski ER, Schedlowski M. Neural response to emotional stimuli during experimental human endotoxemia. Hum Brain Mapp. 2013;34:2217–27.

    Article  PubMed  Google Scholar 

  21. Dellagioia N, Devine L, Pittman B, Hannestad J. Bupropion pre-treatment of endotoxin-induced depressive symptoms. Brain Behav Immun. 2013;31:197–204.

    Article  CAS  PubMed  Google Scholar 

  22. Benson S, Kattoor J, Wegner A, Hammes F, Reidick D, Grigoleit JS, Engler H, Oberbeck R, Schedlowski M, Elsenbruch S. Acute experimental endotoxemia induces visceral hypersensitivity and altered pain evaluation in healthy humans. Pain. 2012;153:794–9.

    Article  CAS  PubMed  Google Scholar 

  23. Dobos N, de Vries EF, Kema IP, Patas K, Prins M, Nijholt IM, Dierckx RA, Korf J, den Boer JA, Luiten PG, Eisel UL. The role of indoleamine 2,3-dioxygenase in a mouse model of neuroinflammation-induced depression. Alzheimers Dis. 2012;28:905–15.

    Article  CAS  Google Scholar 

  24. Pekarek RS, Beisel WR. Effect of endotoxin on serum zinc concentrations in the rat. Appl Microbiol. 1969;18:482–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Pendyala S, Walker JM, Holt PR. A high-fat diet is associated with endotoxemia that originates from the gut. Gastroenterology. 2012;142:1100–1.

    Article  CAS  PubMed  Google Scholar 

  26. Yu Y, Wang R, Chen C, Du X, Ruan L, Sun J, Li J, Zhang L, O’Donnell JM, Pan J, Xu Y. Antidepressant-like effect of trans-resveratrol in chronic stress model: behavioral and neurochemical evidences. Psychiatry Res. 2013;47:315–22.

    Article  Google Scholar 

  27. Pathak L, Agrawal Y, Dhir A. Natural polyphenols in the management of major depression. Expert Opin Investig Drugs. 2013;22:863–80.

    Article  CAS  PubMed  Google Scholar 

  28. Sekirov I, Russell SL, Antunes LC, Finlay BB. Gut microbiota in health and disease. Physiol Rev. 2010;90(3):859–904. Berg AM, Kelly CP, Farraye FA. Clostridium difficile infection in the inflammatory bowel disease patient. Inflamm Bowel Dis. 2013;19(1):194–204.

    Article  CAS  PubMed  Google Scholar 

  29. Pendyala S, Walker JM, Holt PR. A high-fat diet is associated with endotoxemia that originates from the gut. Gastroenterology. 2012;142(5):110–1101.

    Article  CAS  Google Scholar 

  30. Ley RE. Obesity and the human microbiome. Curr Opin Gastroenterol. 2010;26(1):5–11.

    Article  PubMed  Google Scholar 

  31. Hrncir T, Stepankova R, Kozakova H, Hudcovic T, Tlaskalova-Hogenova H. Gut microbiota and lipopolysaccharide content of the diet influence development of regulatory T cells: studies in germ-free mice. BMC Immunol. November 2008;9:65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Campbell A. Autoimmunity and the gut. Autoimmune Dis. 2014;2014:152428.

    PubMed  PubMed Central  Google Scholar 

  33. Isolauri E, Kirjavainen PV, Salminen S. Probiotics: a role in the treatment of intestinal infection and inflammation. Gut. 2002;50(Suppl 3):III54–9.

    PubMed  PubMed Central  Google Scholar 

  34. Malin M, Suomalainen H, Saxelin M, Isolauri E. Promotion of IgA immune response in patients with Crohn’s disease by oral bacteriotherapy with Lactobacillus GG. Ann Nutr Metab. 1996;40(3):137–45.

    Article  CAS  PubMed  Google Scholar 

  35. Brint EK, MacSharry J, Fanning A, Shanahan F, Quigley EM. Differential expression of toll-like receptors in patients with irritable bowel syndrome. Am J Gastroenterol. 2011;106(2):329–36.

    Article  CAS  PubMed  Google Scholar 

  36. del MM G, Leonardi S, Maiello N, Brunese FP. Food allergy and probiotics in childhood. J Clin Gastroenterol. 2010;44(Suppl 1):S22–5.

    Google Scholar 

  37. Probiotics market to reach us$ 46 billion by 2022. Market watch press release online; 2018 Aug 22 [cited 2018 Sep 30]. Available from: https://www.marketwatch.com/press-release/probiotics-market-to-reach-us-46-billion-by-2022-2018-08-22/.

  38. Sanders ME, Levy DD. The science and regulations of probiotic food and supplement product labeling. Ann N Y Acad Sci. 2011;1219:E1–E23.

    Article  PubMed  Google Scholar 

  39. Begley M, Hill C, Gahan CG. Bile salt hydrolase activity in probiotics. Appl Environ Microbiol. 2006;72(3):1729–38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Isolauri E, Kirjavainen PV, Salminen S. Probiotics: a role in the treatment of intestinal infection and inflammation. Gut. 2002;50(Suppl 3):III54–9.

    PubMed  PubMed Central  Google Scholar 

  41. Hong HA, Duc le H, Cutting SM. The use of bacterial spore formers as probiotics. FEMS Microbiol Rev. 2005;29(4):813–35.

    Article  CAS  PubMed  Google Scholar 

  42. Hong HA, Khaneja R, Tam NM, et al. Bacillus subtilis isolated from the human gastrointestinal tract. Res Microbiol. 2009;160(2):134–43.

    Article  CAS  PubMed  Google Scholar 

  43. Mazza P. The use of Bacillus subtilis as an antidiarrhoeal microorganism. Boll Chim Farm. 1994;133(1):3–18.

    CAS  PubMed  Google Scholar 

  44. Mcnulty NP, et al. The impact of a consortium of fermented milk strains on the gut microbiome of gnotobiotic mice and monozygotic twins. Sci Transl Med. 2011;3(106):106ra106. https://doi.org/10.1126/scitranslmed.3002701.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Kalliomäki M, Salminen S, Arvilommi H, Kero P, Koskinen P, Isolauri E. Probiotics in primary prevention of atopic disease: a randomised placebo controlled trial. Lancet. 2001;357(9262):1076–9.

    Article  PubMed  Google Scholar 

  46. Begley M, Hill C, Gahan CGM. Bile salt hydrolase activity in probiotics. Appl Environ Microbiol. 2006;72:1729–38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Isolauri E, Kirjavainen PV, Salminen S. Probiotics: a role in the treatment of intestinal infection and inflammation? Gut. 2002;50:iii54–9.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Hong HA, Duc LH, Cutting SM. The use of bacterial spore formers as probiotics: table 1. FEMS Microbiol Rev. 2005;29:813–35.

    Article  CAS  PubMed  Google Scholar 

  49. Hong HA, Khaneja R, Tam NM, Cazzato A, Tan S, Urdaci M, Brisson A, Gasbarrini A, Barnes I, Cutting SM. Bacillus subtilis isolated from the human gastrointestinal tract. Res Microbiol. 2009;160:134–43.

    Article  CAS  PubMed  Google Scholar 

  50. Mazza P. The use of Bacillus subtilis as an antidiarrhoeal microorganism. Boll Chim Farm. 1994;133(1):3–18.

    CAS  PubMed  Google Scholar 

  51. Gibson GR, Rouzaud G, Brostoff J, Rayment N. An evaluation of probiotic effects in the human gut: microbial aspects. Final technical report for Food Standards Agency (FSA) project ref 2005;G01022. BioBaia Website http://www.biogaia.com/study/evaluation-probioti-effects-human-gut. Accessed 7 Oct 2018.

  52. Kalliomäki M, Salminen S, Arvilommi H, Kero P, Koskinen P, Isolauri E. Probiotics in primary prevention of atopic disease: a randomised placebo-controlled trial. Lancet. 2001;357:1076–9.

    Article  PubMed  Google Scholar 

  53. Adams CA. The probiotic paradox: live and dead cells are biological response modifiers. Nutr Res Rev. 2010;23:37–46.

    Article  CAS  PubMed  Google Scholar 

  54. Lahtinen SJ. Probiotic viability – does it matter? Microb Ecol Health Dis. 2012;23 https://doi.org/10.3402/mehd.v23i0.18567.

  55. Logan AC, Katzman M. Major depressive disorder: probiotics may be an adjuvant therapy. Med Hypotheses. 2005;64:533–8.

    Article  PubMed  Google Scholar 

  56. Messaoudi M, Lalonde R, Violle N, Javelot H, Desor D, Nejdi A, Bisson J-F, Rougeot C, Pichelin M, Cazaubiel M, et al. Assessment of psychotropic-like properties of a probiotic formulation (Lactobacillus helveticus R0052 and Bifidobacterium longum R0175) in rats and human subjects. Br J Nutr. 2011;105:755–64.

    Article  CAS  PubMed  Google Scholar 

  57. Bravo JA, Forsythe P, Chew MV, Escaravage E, Savignac HM, Dinan TG, Bienenstock J, Cryan JF. Ingestion of Lactobacillus strain regulates emotional behavior and central GABA receptor expression in a mouse via the vagus nerve. Proc Natl Acad Sci U S A. 2011;108:16050–5.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Steenbergen L, Sellaro R, van Hemert S, Bosch JA, Colzato LS. A randomized controlled trial to test the effect of multispecies probiotics on cognitive reactivity to sad mood. Brain Behav Immun. 2015;48:258–64.

    Article  PubMed  Google Scholar 

  59. Wall R, Marques TM, O’Sullivan O, Ross RP, Shanahan F, Quigley EM, Dinan TG, Kiely B, Fitzgerald GF, Cotter PD, et al. Contrasting effects of Bifidobacterium breve NCIMB 702258 and Bifidobacterium breve DPC 6330 on the composition of murine brain fatty acids and gut microbiota. Am J Clin Nut. 2012;95:1278–87.

    Article  CAS  Google Scholar 

  60. Yurko-Mauro K, McCarthy D, Rom D, Nelson EB, Ryan AS, Blackwell A, Salem N, Stedman M. MIDAS investigators beneficial effects of docosahexaenoic acid on cognition in age-related cognitive decline. Alzheimers Dementia. 2010;6:456–64.

    Article  CAS  Google Scholar 

  61. Gareau MG, Sherman PM, Walker WA. Probiotics and the gut microbiota in intestinal health and disease. Nat Rev Gastroenterol Hepatol. 2010;7:503–14.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Laukoetter MG, Nava P, Nusrat A. Role of the intestinal barrier in inflammatory bowel disease. World J Gastroenterol. 2008;14:401.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Rizos EN, Rontos I, Laskos E, Arsenis G, Michalopoulou PG, Vasilopoulos D, Gournellis R, Lykouras L. Investigation of serum BDNF levels in drug-naive patients with schizophrenia. Prog Neuro-Psychopharmacol Biol Psychiatry. 2008;32(5):1308–11. https://doi.org/10.1016/j.pnpbp.2008.04.007.

    Article  CAS  Google Scholar 

  64. Hadhazy A (2010) Think twice: how the Gut’s “second brain” influences mood and well-being. In: Scientific American. https://www.scientificamerican.com/article/gut-second-brain/. Accessed 7 Oct 2018.

  65. Tougas G. The autonomic nervous system in functional bowel disorders. Gut. 2000;47:78iv–80.

    Article  Google Scholar 

  66. Foster J, Zhou L. Psychobiotics and the gut–brain axis: in the pursuit of happiness. Neuropsychiatr Dis Treat. 2015;11:715.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Burokas A, Moloney RD, Dinan TG, Cryan JF. Microbiota regulation of the mammalian gut–brain axis. Adv Appl Microbiol. 2015;91:1–62.

    Article  CAS  PubMed  Google Scholar 

  68. Dinan TG, Cryan JF. Melancholic microbes: a link between gut microbiota and depression? Neurogastroenterol Motil. 2013;25:713–9.

    Article  CAS  PubMed  Google Scholar 

  69. Shea-Donohue T, Urban JF. Neuroimmune modulation of gut function. Gastrointest Pharmacol Handb Exp Pharmacol. 2016;239:247–67.

    Article  CAS  Google Scholar 

  70. Cenit M, Olivares M, Codoñer-Franch P, Sanz Y. Intestinal microbiota and celiac disease: cause, consequence or co-evolution? Nutrients. 2015;7:6900–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Tougas G. The autonomic nervous system in functional bowel disorders. Gut. 2000;47:78iv–80.

    Article  Google Scholar 

  72. Petra AI, Panagiotidou S, Hatziagelaki E, Stewart JM, Conti P, Theoharides TC. Gut-microbiota-brain axis and its effect on neuropsychiatric disorders with suspected immune dysregulation. Clin Ther. 2015;37:984–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Cohen S, Janicki-Deverts D, Doyle WJ, Miller GE, Frank E, Rabin BS, Turner RB. Chronic stress, glucocorticoid receptor resistance, inflammation, and disease risk. Proc Natl Acad Sci U S A. 2012;109:5995–9.

    Article  PubMed  PubMed Central  Google Scholar 

  74. Drossman D, Creed F, Olden K, Svedlund J, Toner B, Whitehead W. Psychosocial aspects of the functional gastrointestinal disorders. In: Drossman D, Corazziari E, Talley N, Thompson W, Whitehead W, editors. Romm II. The functional gastrointestinal disorders: diagnosis, pathophysiology and treatment; a multinational consensus. 2nd ed. Degnon and Associates: McLean; 2000. p. 157–245.

    Google Scholar 

  75. Lackner JM, Lockwood A, Coad ML, et al. Alterations in GI symptoms, psychological status, and brain functioning following participation in cognitive therapy for IBS. Gastroenterology. 2004;126:A-477.

    Google Scholar 

  76. Cammarota G, Ianiro G, Bibbò S, Gasbarrini A. Gut microbiota modulation: probiotics, antibiotics or fecal microbiota transplantation? Intern Emerg Med. 2014;9(4):365–73.

    Article  PubMed  Google Scholar 

  77. Yolken R, Dickerson F. The microbiome-the missing link in the pathogenesis of schizophrenia. J Schizophr Res. 2014;153:S16.

    Article  Google Scholar 

  78. Song X, Fan X, Song X, Zhang J, Zhang W, Li X, et al. Elevated levels of adiponectin and other cytokines in drug naive, first episode schizophrenia patients with normal weight. J Schizophr Res. 2013;150(1):269–73.

    Article  Google Scholar 

  79. Hope S, Ueland T, Steen NE, Dieset I, Lorentzen S, Berg AO, et al. Interleukin 1 receptor antagonist and soluble tumor necrosis factor receptor 1 are associated with general severity and psychotic symptoms in schizophrenia and bipolar disorder. J Schizophr Res. 2013;145(1–3):36–42.

    Article  Google Scholar 

  80. Severance EG, Gressitt KL, Yang S, Stallings CR, Origoni AE, Vaughan C, et al. Seroreactive marker for inflammatory bowel disease and associations with antibodies to dietary proteins in bipolar disorder. Bipolar Disord. 2013;16(3):230–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Oliver G, Wardle J, Gibson EL. Stress and food choice: a laboratory study. Psychosom Med. 2000;62(6):853–65.

    Article  CAS  PubMed  Google Scholar 

  82. Udem S. Faculty of 1000 evaluation for impact of diet in shaping gut microbiota revealed by a comparative study in children from Europe and rural Africa. F1000 – post-publication peer review of the biomedical literature. 2010.

    Google Scholar 

  83. David LA, Maurice CF, Carmody RN, Gootenberg DB, Button JE, Wolfe BE, et al. Diet rapidly and reproducibly alters the human gut microbiome. Nature. 2013;505(7484):559–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Drossman DA, Camilleri M, Mayer EA, Whitehead WE. AGA technical review on irritable bowel syndrome. Gastroenterology. 2002;123(6):2108–31.

    Article  PubMed  Google Scholar 

  85. Tougas G. The autonomic nervous system in functional bowel disorders. Gut. 2000;47(90004):78iv–80.

    Article  Google Scholar 

  86. Eisenhofer G, Åneman A, Friberg P, Hooper D, Fåndriks L, Lonroth H, et al. Substantial production of dopamine in the human gastrointestinal tract. J Clin Endocrinol Metab. 1997;82(11):3864–71.

    Article  CAS  PubMed  Google Scholar 

  87. Kim D-Y, Camilleri M. Serotonin: a mediator of the brain-gut connection. Am J Gastroenterol. 2000;95(10):2698–709.

    CAS  PubMed  Google Scholar 

  88. Koopman KE, Roefs A, Elbers DCE, Fliers E, Booij J, Serlie MJ, et al. Brain dopamine and serotonin transporter binding are associated with visual attention bias for food in lean men. Psychol Med. 2016;46(08):1707–17.

    Article  CAS  PubMed  Google Scholar 

  89. Logan AC, Rao AV, Irani D. Chronic fatigue syndrome: lactic acid bacteria may be of therapeutic value. Med Hypotheses. 2003;60(6):915–23.

    Article  PubMed  Google Scholar 

  90. Logan AC, Katzman M. Major depressive disorder: probiotics may be an adjuvant therapy. Med Hypotheses. 2005;64(3):533–8.

    Article  PubMed  Google Scholar 

  91. Selhub EM, Logan AC, Bested AC. Fermented foods, microbiota, and mental health: ancient practice meets nutritional psychiatry. J Physiol Anthropol. 2014;33(1):2.

    Article  PubMed  PubMed Central  Google Scholar 

  92. Rogers MA, Greene MT, Young VB, Saint S, Langa KM, Kao JY, et al. Depression, antidepressant medications, and risk of Clostridium difficile infection. BMC Med. 2013;11(1):121.

    Article  PubMed  PubMed Central  Google Scholar 

  93. Bravo JA, Forsythe P, Chew MV, Escaravage E, Savignac HM, Dinan TG, et al. Ingestion of Lactobacillus strain regulates emotional behavior and central GABA receptor expression in a mouse via the vagus nerve. Proc Natl Acad Sci U S A. 2011;108(38):16050–5.

    Article  PubMed  PubMed Central  Google Scholar 

  94. Palma GD, Collins SM, Bercik P, Verdu EF. The microbiota-gut-brain axis in gastrointestinal disorders: stressed bugs, stressed brain or both? J Physiol. 2014;592(14):2989–97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Barrett E, Ross R, O’Toole P, Fitzgerald G, Stanton C. γ-Aminobutyric acid production by culturable bacteria from the human intestine. J Appl Microbiol. 2012;113(2):411–7.

    Article  CAS  PubMed  Google Scholar 

  96. Mawe GM, Hoffman JM. Serotonin signalling in the gut—functions, dysfunctions and therapeutic targets. Nat Rev Gastroenterol Hepatol. 2013;10(8):473–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Prakash S, Rodes L, Coussa-Charley M, Tomaro-Duchesneau C, et al. Gut microbiota: next frontier in understanding human health and development of biotherapeutics. Biologics Targ Ther. 2011;5:71.

    Article  Google Scholar 

  98. Dinan TG, Stanton C, Cryan JF. Psychobiotics: a novel class of psychotropic. Biol Psychiatry. 2013;74(10):720–6.

    Article  CAS  PubMed  Google Scholar 

  99. Bested AC, Logan AC, Selhub EM. Intestinal microbiota, probiotics and mental health: from Metchnikoff to modern advances: part III – convergence toward clinical trials. Gut Pathog. 2013;5(1):4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Messaoudi M, Lalonde R, Violle N, Javelot H, Desor D, Nejdi A, et al. Assessment of psychotropic-like properties of a probiotic formulation (Lactobacillus helveticus R0052 and Bifidobacterium longum R0175) in rats and human subjects. Br J Nutr. 2010;105(05):755–64.

    Article  CAS  PubMed  Google Scholar 

  101. Evrensel A, Ceylan ME. The gut-brain axis: the missing link in depression. Clin Psychopharmacol Neurosci. 2015;13(3):239–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Foster JA, K-AM N. Gut–brain axis: how the microbiome influences anxiety and depression. Trends Neurosci. 2013;36(5):305–12.

    Article  CAS  PubMed  Google Scholar 

  103. Liu Y-W, Liu W-H, Wu C-C, Juan Y-C, Wu Y-C, Tsai H-P, et al. Psychotropic effects of Lactobacillus plantarum PS128 in early life-stressed and naïve adult mice. Brain Res. 2016;1631:1–12.

    Article  CAS  PubMed  Google Scholar 

  104. Collins SM, Bercik P. Intestinal bacteria influence brain activity in healthy humans. Nat Rev Gastroenterol Hepatol. 2013;10(6):326–7.

    Article  PubMed  Google Scholar 

  105. Nature’s Bounty: The Psychobiotic Revolution [Internet]. Psychology Today. Sussex Publishers; [cited 2018Oct21]. Available from: https://www.psychologytoday.com/us/articles/201403/natures-bounty-the-psychobiotic-revolution.

  106. What is BDNF and what does it do? [Internet]. Examined existence. [cited 2018Oct21]. Available from: https://examinedexistence.com/what-is-bdnf-and-what-does-it-do/.

  107. Akbari E, Asemi Z, Kakhaki RD, Bahmani F, Kouchaki E, Tamtaji OR, et al. Effect of probiotic supplementation on cognitive function and metabolic status in Alzheimer’s disease: a randomized, double-blind and controlled trial. Front Aging Neurosci. 2016;8:256.

    Article  PubMed  PubMed Central  Google Scholar 

  108. Kasińska MA, Drzewoski J. Effectiveness of probiotics in type 2 diabetes: a meta-analysis. Pol Arch Int Med. 2015;125(11):803–13.

    Google Scholar 

  109. Mazloom Z, Yousefinejad A, Dabbaghmanesh MH. Effect of probiotics on lipid profile, glycemic control, insulin action, oxidative stress, and inflammatory markers in patients with type 2 diabetes: a clinical trial. Iran J Med Sci. 2013;38:38–43.

    PubMed  PubMed Central  Google Scholar 

  110. Dwivedi Y. Brain-derived neurotrophic factor: role in depression and suicide. Neuropsychiatr Dis Treat. 2009;5:433.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Brunoni AR, Lopes M, Fregni F. A systematic review and meta-analysis of clinical studies on major depression and BDNF levels: implications for the role of neuroplasticity in depression. Int J Neuropsychopharmacol. 2008;11(8):1169–80.

    Article  CAS  PubMed  Google Scholar 

  112. Mattson MP. Glutamate and neurotrophic factors in neuronal plasticity and disease. Ann N Y Acad Sci. 2008;1144:97–112. https://doi.org/10.1196/annals.1418.005.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Akbari E, Asemi Z, Daneshvar Kakhaki R, Bahmani F, Kouchaki E, et al. Effect of probiotic supplementation on cognitive function and metabolic status in Alzheimer’s disease: a randomized, double-blind and controlled trial. Front Aging Neurosci. 2016;8:256. https://doi.org/10.3389/fnagi.2016.00256.

    Article  PubMed  PubMed Central  Google Scholar 

  114. Perlmutter D. Brain maker: the power of gut microbes to heal and protect your brain – for life. Boston: Little, Brown and Company USA; 2015.

    Google Scholar 

  115. Nagpal R, Mainali R, Ahmadi S, Wang S, Singh R, Kavanagh K, Kitzman D, et al. Gut microbiome and aging: physiological and mechanistic insights. Nutr Healthy Aging. 2018;4(4):267–85.

    Article  PubMed  PubMed Central  Google Scholar 

  116. Campbell AW. The blood-brain barrier. Alt Ther. 2016;22(2):6.

    Google Scholar 

  117. Tennant, McKenna. Fecal microbiota transplantation: the future of Feces. Yale Global Health Review, no 6, 2016.

    Google Scholar 

  118. Selhub EM, Logan AC, Bested AC. Fermented foods, microbiota, and mental health: ancient practice meets nutritional psychiatry. J Physiol Anthropol. 2014;33:2.

    Article  PubMed  PubMed Central  Google Scholar 

  119. Leung K, Thuret S. Gut microbiota: a modulator of brain plasticity and cognitive function in ageing. Healthcare. 2015;3:898–916.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Norling, S.L. (2020). The Microbiome and Brain Health. In: Noland, D., Drisko, J., Wagner, L. (eds) Integrative and Functional Medical Nutrition Therapy. Humana, Cham. https://doi.org/10.1007/978-3-030-30730-1_25

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-30730-1_25

  • Published:

  • Publisher Name: Humana, Cham

  • Print ISBN: 978-3-030-30729-5

  • Online ISBN: 978-3-030-30730-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics