Skip to main content

Nutritional Influences on Methylation

  • Chapter
  • First Online:
Integrative and Functional Medical Nutrition Therapy

Abstract

Nutritional genomics is comprised of both nutrigenomics and nutrigenetics. Nutrigenetics looks at the impact of genetics on the interaction between diet and disease risk prediction and is more clearly in scope of practice for medical professionals and genetic counselors. Nutrigenomics studies the measurable influence of nutrition on the genome via the metabolome and proteome and is more clearly in the scope of practice of nutritionists, dietitians, and other advanced health care professionals. Nutrigenomics offers insight into genetic differences in methylation, neurotransmitter synthesis, and detoxification and how to improve these biochemical processes. Central to methylation, the regulatory cycle that influences genomic expression is homocysteine catabolism. Homocysteine is often considered an inflammatory amino acid derivative; however, its regulation plays a primary role not only in epigenetics, but also in detoxification, glutathione generation, and many health conditions. There are two routes of homocysteine recycling and one true disposal route: (1) methionine synthase/methionine synthase reductase (MTR/MTRR), which converts homocysteine back to methionine; (2) betaine homocysteine methyltransferase (BHMT), which also converts homocysteine to methionine; and (3) cystathionine beta synthase (CBS), the only true disposal route that converts homocysteine to cystathionine and, ultimately, leads to the production of sulfate, taurine, and glutathione metabolites. CBS is therefore the transition from methylation to the transsulfuration pathway, which ultimately helps form the endogenous antioxidant glutathione used in phase 2 detoxification. In this way, homocysteine disposal is essential for proper glutathione synthesis. Understanding and influencing this process can help improve various metabolic processes, including turning “on” and “off” genes, synthesizing neurotransmitters, and the production of glutathione for detoxification. In fact, it is important to look beyond methylation to associated pathways including one-carbon metabolism, transsulfuration, the tetrahydrobiopterin (BH4) cycle, and monoamine synthesis. Validation of individual single-nucleotide polymorphism (SNP) activity via laboratory and functional testing allows better insight into the epigenetic activation of genes, further elucidating the mechanisms of nutrient manipulation to improve health.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ordovas J, Mooser V. Nutrigenomics and nutrigenetics. Curr Opin Lipidol. 2004;15(2):10108.

    Article  Google Scholar 

  2. Karki R, Pandya D, Elston RC, Ferlini C. Defining “mutation” and “polymorphism” in the era of personal genomics. BMC Med Genet. 2015;8:37. https://doi.org/10.1186/s12920-015-0115-z.

    Article  CAS  Google Scholar 

  3. Albert PR. What is a functional genetic polymorphism? Defining classes of functionality. J Psychiatry Neurosci JPN. 2011;36(6):363–5.

    Article  PubMed  Google Scholar 

  4. Devlin TM. Textbook of biochemistry with clinical correlations. 7th ed. Hoboken, NJ: Wiley; 2011.

    Google Scholar 

  5. Li A, Meyre D. Jumping on the train of personalized medicine: a primer for non-geneticist clinicians: part 2. Fundamental concepts in genetic epidemiology. Curr Psychiatr Rev. 2014;10(2):101–17.

    Article  Google Scholar 

  6. Edwards AWF. Reginald Crundall Punnett: first Arthur Balfour professor of genetics, Cambridge, 1912. Genetics. 2012;192:2–13.

    Article  Google Scholar 

  7. Waddington CH. The epigenotype. Endeavour. 1942;1:18–20.

    Google Scholar 

  8. Howell A, Anderson AS, Clarke RB, Duffy SW, Evans DG, Garcia-Closas M, Gescher AJ, Key TJ, Saxton JM, Harvie MN. Risk determination and prevention of breast cancer. Breast Cancer Res BCR. 2014;16:446.

    Article  CAS  PubMed  Google Scholar 

  9. van Abeelen AFM, Elias SG, Roseboom TJ, Bossuyt PMM, van der Schouw YT, Grobbee DE, Uiterwaal CSPM. Postnatal acute famine and risk of overweight: the Dutch Hunger Winter study. Int J Pediatr. 2012;2012:936509.

    PubMed  PubMed Central  Google Scholar 

  10. Paul B, Barnes S, Demark-Wahnefried W, Morrow C, Salvador C, Skibola C, Tollefsbol TO. Influences of diet and the gut microbiome on epigenetic modulation in cancer and other diseases. Clin Epigenetics. 2015;7:112. https://doi.org/10.1186/s13148-015-0144-7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Lord RS, Bralley JA. Laboratory evaluations for integrative and functional medicine. Revised. 2nd ed. Duluth: Metametrix Institute; 2012.

    Google Scholar 

  12. Lewis ZT, Totten SM, Smilowitz JT, Popovic M, Parker E, Lemay DG, et al. Maternal fucosyltransferase 2 status affects the gut bifidobacterial communities of breastfed infants. Microbiome. 2015;3:13.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Blom HJ, Smulders Y. Overview of homocysteine and folate metabolism. With special references to cardiovascular disease and neural tube defects. J Inherit Metab Dis. 2011;34(1):75–81.

    Article  CAS  PubMed  Google Scholar 

  14. Banerjee A, Ray S. Structural exploration and conformational transitions in MDM2 upon DHFR interaction from Homo sapiens: a computational outlook for malignancy via epigenetic disruption. Scientifica. 2016;2016:9420692.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Widemann BC, Balis FM, Kim A, Boron M, Jayaprakash N, Shalabi A, O’Brien M, Eby M, Cole DE, Murphy RF, Fox E, Ivy P, Adamson PC. Glucarpidase, leucovorin, and thymidine for high-dose methotrexate-induced renal dysfunction: clinical and pharmacologic factors affecting outcome. J Clin Oncol. 2010;28(25):3979–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Christensen KE, Mikael LG, Leung KY, Lévesque N, Deng L, Wu Q, Malysheva OV, Best A, Caudill MA, Rozen R. High folic acid consumption leads to pseudo-MTHFR deficiency, altered lipid metabolism, and liver injury in mice. Am J Clin Nutr. 2015;101(3):646–58.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. King AL, Mantena SK, Andringa KK, Millender-Swain T, Dunham-Snary KJ, Oliva CR, Griguer CE, Bailey SM. The methyl donor S-adenosylmethionine prevents liver hypoxia and dysregulation of mitochondrial bioenergetic function in a rat model of alcohol-induced fatty liver disease. Redox Biol. 2016;9:188–97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Stipanuk MH, Ueki I. Dealing with methionine/homocysteine sulfur: cysteine metabolism to taurine and inorganic sulfur. J Inherit Metab Dis. 2011;34(1):17–32.

    Article  CAS  PubMed  Google Scholar 

  19. Strickland KC, Krupenko NI, Krupenko SA. Molecular mechanisms underlying the potentially adverse effects of folate. Clin Chem Lab Med. 2013;51(3):607–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Banka S, Blom HJ, Walter J, Aziz M, Urquhart J, Clouthier CM, Rice GI, de Brouwer AP, Hilton E, Vassallo G, Will A, Smith DE, Smulders YM, Wevers RA, Steinfeld R, Heales S, Crow YJ, Pelletier JN, Jones S, Newman WG. Identification and characterization of an inborn error of metabolism caused by dihydrofolate reductase deficiency. Am J Hum Genet. 2011;88(2):216–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. U.S. National Library of Medicine [Internet]. Genetics Home Reference; c2017. Available from: http://ghr.nlm.nih.gov/glossary=methylation.

  22. Zeisel S. Choline, other methyl-donors and epigenetics. Nutrients. 2017;9(5):445.

    Article  CAS  PubMed Central  Google Scholar 

  23. Ranabir S, Reetu K. Stress and hormones. Indian J Endocrinol Metab. 2011;15(1):18–22. https://doi.org/10.4103/2230-8210.77573.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. NCBI. PNMT phenylethanolamine N-methyltransferase [Homo sapiens (human)]. 2017. Retrieved from: https://www.ncbi.nlm.nih.gov/gene/5409.

  25. Zhi X, Yang B, Fan S, Wang Y, Wei J, Zheng Q, Sun G. Gender-specific interactions of MTHFR C677T and MTRR A66G polymorphism with overweight/obesity on serum lipid levels in a Chinese Han populations. Lipids Health Dis. 2016;15:185.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Finkelstein JD, Martin JJ. Methionine metabolism in mammals. Distribution of homocysteine between competing pathways. J Biol Chem. 1984;259:9508–13.

    CAS  PubMed  Google Scholar 

  27. Maron BA, Loscalzo J. The treatment of Hyperhomocysteinemia. Annu Rev Med. 2009;60:39–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Ganu RS, Ishida Y, Koutmos M, Kolokotronis S, Roca AL, Garrow TA, Schook LB. Evolutionary analyses and natural selection of betaine-homocysteine S-methyltransferase (BHMT) and BHMT2 genes. PLoS One. 2015;10(7):e0134084. https://doi.org/10.1371/journal.pone.0134084.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Zhou RF, Chen XL, Zhou ZG, Zhang YJ, Lan QY, Liao GC, Chen YM, Zhu HL. Higher dietary intakes of choline and betaine are associated with a lower risk of primary liver cancer: a case-control study. Sci Rep. 2017;7(1):679.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. De Stefano V, Dekou V, Nicaud V, Chasse JF, London J, Stansbie D, Humphries SE, Gudnason V. Linkage disequilibrium at the cystathionine beta synthase (CBS) locus and the association between genetic variation at the CBS locus and plasma levels of homocysteine. The Ears II Group. European Atherosclerosis Research Study. Ann Hum Genet. 1998;62(Pt 6):481–90.

    Article  PubMed  Google Scholar 

  31. Wei G, Jun-tao K, Ze-yu C, et al. Hydrogen sulfide as an endogenous modulator in mitochondria and mitochondria dysfunction. Oxidative Med Cell Longev. 2012;2012:1. https://doi.org/10.1155/2012/878052.

    Article  CAS  Google Scholar 

  32. Harding CO, Neff M, Wild K, Jones K, Elzaouk L, Thöny B, Milstien S. The fate of intravenously administered tetrahydrobiopterin and its implications for heterologous gene therapy of phenylketonuria. Mol Genet Metab. 2004;81(1):52–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. NCBI. SUOX sulfite oxidase [Homo sapiens (human)]. 2017. Retrieved from: https://www.ncbi.nlm.nih.gov/gene/6821.

  34. Gorren AC, Mayer B. Tetrahydrobiopterin in nitric oxide synthesis: a novel biological role for pteridines. Curr Drug Metab. 2002;3(2):133–57.

    Article  CAS  PubMed  Google Scholar 

  35. Daubner SC, Le T, Wang S. Tyrosine hydroxylase and regulation of dopamine synthesis. Arch Biochem Biophys. 2011;508(1):1–12. https://doi.org/10.1016/j.abb.2010.12.017.

    Article  CAS  PubMed  Google Scholar 

  36. Shih DF, Hsiao CD, Min MY, Lai WS, Yang CW, Lee WT, et al. Aromatic L-amino acid decarboxylase (AADC) is crucial for brain development and motor functions. PLoS One. 2013;8(8):e71741. https://doi.org/10.1371/journal.pone.0071741.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Rahman MK, Rahman F, Rahman T, Kato T. Dopamine-β-hydroxylase (DBH), its cofactors and other biochemical parameters in the serum of neurological patients in Bangladesh. Int J Biomed Sci. 2009;5(4):395–401.

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Volavka J, Bilder R, Nolan K. Catecholamines and aggression: the role of COMT and MAO polymorphisms. Ann N Y Acad Sci. 2004;1036:393–8.

    Article  CAS  PubMed  Google Scholar 

  39. Lee LO, Prescott CA. Association of the Catechol-O-Methyltransferase (COMT) Val158Met polymorphism and anxiety-related traits: a meta-analysis. Psychiatr Genet. 2014;24(2):52–69.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Gropper SS, Smith JL. Advanced nutrition and human metabolism. 6th ed. Belmont: Wadsworth Cengage Learning; 2013.

    Google Scholar 

  41. Bear MF, Connors BW, Paradiso MA. Neuroscience exploring the brain. 3rd ed. Baltimore: Lippincott Williams & Wilkins; 2007.

    Google Scholar 

  42. Vink R. Magnesium in the CNS: recent advances and developments. Magnes Res. 2016;29(3):95–101.

    CAS  PubMed  Google Scholar 

  43. Slopien R, Slopien A, Rozycka A, Warenik-Szymankiewicz A, Lianeri M, Jagodzinski PP. The c.1460C>T polymorphism of MAO-A is associated with the risk of depression in postmenopausal women. Sci World J. 2012;2012:194845.

    Article  CAS  Google Scholar 

  44. Devlin TM. Textbook of biochemistry with clinical correlations. 7th ed. New York: Wiley; 2010.

    Google Scholar 

  45. Jin X, Yu ZF, Chen F, Lu GX, Ding XY, Xie LJ, Sun JT. Neuronal nitric oxide synthase in neural stem cells induces neuronal fate commitment via the inhibition of histone deacetylase 2. Front Cell Neurosci. 2017;11:66.

    PubMed  PubMed Central  Google Scholar 

  46. Elhwuegi AD. The wonders of Phosphodiesterase-5 inhibitors: a majestic history. Ann Med Health Sci Res. 2016;6(3):139–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Jung HC, Mun KH, Park TC, Lee YC, Park JM, Huh K, Seong DH, Suh JK. Role of nitric oxide in penile erection. Yonsei Med J. 1997;38(5):261–9.

    Article  CAS  PubMed  Google Scholar 

  48. Ramsey KH, Sigar IM, Rana SV, Gupta J, Holland SM, Byrne GI. Role for inducible nitric oxide synthase in protection from chronic chlamydia trachomatis urogenital disease in mice and its regulation by oxygen free radicals. Infect Immun. 2001;69(12):7374–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Palumbo P, Miconi G, Cinque B, Lombardi F, La Torre C, Dehcordi SR, Galzio R, Cimini A, Giordano A, Cifone MG. NOS2 expression in glioma cell lines and glioma primary cell cultures: correlation with neurosphere generation and SOX-2 expression. Oncotarget. 2017;8(15):25583–98.

    Article  Google Scholar 

  50. Burrows N, Cane G, Robson M, Gaude E, Howat WJ, Szlosarek PW, Maxwell PH. Hypoxia-induced nitric oxide production and tumour perfusion is inhibited by pegylated arginine deiminase (ADI-PEG20). Sci Rep. 2016;6:622950.

    Article  CAS  Google Scholar 

  51. Thameem F, Puppala S, Arar NH, Stern MP, Blangero J, Duggirala R, Abboud HE. Endothelial nitric oxide synthase (eNOS) gene polymorphisms and their association with type 2 diabetes related traits in Mexican Americans. Diab Vasc Dis Res. 2008;5(2):109–13. https://doi.org/10.3132/dvdr.2008.018.

    Article  PubMed  Google Scholar 

  52. Nelson DL, Cox MM. Lehninger principles of biochemistry. 4th ed. New York: W.H.Freeman; 2004.

    Google Scholar 

  53. Chang JY, Liu LZ. Manganese potentiates nitric oxide production by microglia. Brain Res Mol Brain Res. 1999;68(1–2):22–8.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jessica M. Pizano .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Pizano, J.M., Williamson, C.B. (2020). Nutritional Influences on Methylation. In: Noland, D., Drisko, J., Wagner, L. (eds) Integrative and Functional Medical Nutrition Therapy. Humana, Cham. https://doi.org/10.1007/978-3-030-30730-1_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-30730-1_18

  • Published:

  • Publisher Name: Humana, Cham

  • Print ISBN: 978-3-030-30729-5

  • Online ISBN: 978-3-030-30730-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics