Skip to main content

Entropy Stable Discontinuous Galerkin Finite Element Moment Methods for Compressible Fluid Dynamics

  • Chapter
  • First Online:
Numerical Methods for Flows

Abstract

In this work we propose numerical approximations of the Boltzmann equation that are consistent with the Euler and Navier–Stoke–Fourier solutions. We conceive of the Euler and the Navier–Stokes–Fourier equations as moment approximations of the Boltzmann equation in renormalized form. Such renormalizations arise from the so-called Chapman-Enskog analysis of the one-particle marginal in the Boltzmann equation. We present a numerical approximation of the Boltzmann equation that is based on the discontinuous Galerkin method in position dependence and on the renormalized-moment method in velocity dependence. We show that the resulting discontinuous Galerkin finite element moment method is entropy stable. Numerical results are presented for turbulent flow in the lid-driven cavity benchmark.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abdelmalik, M., van Brummelen, E.: An entropy stable discontinuous Galerkin finite-element moment method for the Boltzmann equation. Comput. Math. Appl. 72(8), 1988–1999 (2016)

    Article  MathSciNet  Google Scholar 

  2. Abdelmalik, M., van Brummelen, E.: Moment closure approximations of the Boltzmann equation based on φ-divergences. J. Stat. Phys. 164(1), 77–104 (2016)

    Article  MathSciNet  Google Scholar 

  3. Bardos, C., Golse, F., Levermore, D.: Fluid dynamic limits of kinetic equations. I. Formal derivations. J. Stat. Phys. 63(1), 323–344 (1991)

    Article  MathSciNet  Google Scholar 

  4. Barth, T.: On discontinuous Galerkin approximations of Boltzmann moment systems with Levermore closure. Comput. Methods Appl. Mech. Eng. 195(25–28), 3311–3330 (2006)

    Article  MathSciNet  Google Scholar 

  5. Bhatnagar, P., Gross, E., Krook, M.: A model for collision processes in gases. I. Small amplitude processes in charged and neutral one-component systems. Phys. Rev. 94(511—525) (1954)

    Article  Google Scholar 

  6. Bouchut, F., Perthame, B.: A BGK model for small Prandtl number in the Navier-Stokes approximation. J. Stat. Phys. 71(1–2), 191–207 (1993)

    Article  MathSciNet  Google Scholar 

  7. Cercignani, C.: The Boltzmann Equation and Its Applications. Springer, New York (1988)

    Book  Google Scholar 

  8. Chandrashekar, P.: Discontinuous Galerkin method for Navier–Stokes equations using kinetic flux vector splitting. J. Comput. Phys. 233, 527–551 (2013)

    Article  MathSciNet  Google Scholar 

  9. Chou, S.Y., Baganoff, D.: Kinetic flux–vector splitting for the Navier–Stokes equations. J. Comput. Phys. 130(2), 217–230 (1997)

    Article  Google Scholar 

  10. Di Pietro, D., Ern, A.: Mathematical Aspects of Discontinuous Galerkin Methods. Springer, Berlin (2012)

    Book  Google Scholar 

  11. Esposito, R., Lebowitz, J., Marra, R.: Hydrodynamic limit of the stationary Boltzmann equation in a slab. Commun. Math. Phys. 160(1), 49–80 (1994)

    Article  MathSciNet  Google Scholar 

  12. Godunov, S.: Finite difference method for numerical computation of discontinuous solutions of the equations of fluid dynamics. Mat. Sbornik 47, 271–306 (1959)

    MATH  Google Scholar 

  13. Golse, F.: The Boltzmann equation and its hydrodynamic limits. Evol. Equ. 2, 159–301 (2005)

    MathSciNet  MATH  Google Scholar 

  14. Golse, F., Saint-Raymond, L.: The Navier–Stokes limit of the Boltzmann equation for bounded collision kernels. Invent. Math. 155(1), 81–161 (2004)

    Article  MathSciNet  Google Scholar 

  15. John, B., Gu, X., Emerson, D.: Investigation of heat and mass transfer in a lid-driven cavity under nonequilibrium flow conditions. Numer. Heat Transfer, Part B: Fundam. 58(5), 287–303 (2010)

    Article  Google Scholar 

  16. Levermore, C.: Moment closure hierarchies for kinetic theories. J. Stat. Phys. 83, 1021–1065 (1996)

    Article  MathSciNet  Google Scholar 

  17. Levermore, C., Masmoudi, N.: From the Boltzmann equation to an incompressible Navier–Stokes–Fourier system. Arch. Rational Mech. Anal. 196, 753–809 (2010)

    Article  MathSciNet  Google Scholar 

  18. Lions, P.L., Masmoudi, N.: From the Boltzmann equations to the equations of incompressible fluid mechanics, I. Arch. Rational Mech. Anal. 158(3), 173–193 (2001)

    Article  MathSciNet  Google Scholar 

  19. Lions, P.L., Masmoudi, N.: From the Boltzmann equations to the equations of incompressible fluid mechanics, II. Arch. Rational Mech. Anal. 158(3), 195–211 (2001)

    Article  MathSciNet  Google Scholar 

  20. Liu, H., Xu, K.: A Runge–Kutta discontinuous Galerkin method for viscous flow equations. J. Comput. Phys. 224(2), 1223–1242 (2007)

    Article  MathSciNet  Google Scholar 

  21. Osher, S., Solomon, F.: Upwind difference schemes for hyperbolic conservation laws. Math. Comput. 38, 339–374 (1982)

    Article  MathSciNet  Google Scholar 

  22. Ren, X., Xu, K., Shyy, W., Gu, C.: A multi-dimensional high-order discontinuous Galerkin method based on gas kinetic theory for viscous flow computations. J. Comput. Phys. 292, 176–193 (2015)

    Article  MathSciNet  Google Scholar 

  23. Roe, P.: Approximate Riemann solvers, parameter vectors, and difference schemes. J. Comput. Phys. 43, 357–372 (1981)

    Article  MathSciNet  Google Scholar 

  24. Saint-Raymond, L.: Hydrodynamic Limits of the Boltzmann Equation. Lecture Notes in Mathematics, vol. 1971. Springer, Berlin (2009)

    Google Scholar 

  25. Temam, R., Miranville, A.: Mathematical modeling in continuum mechanics. Cambridge University Press, Cambridge (2005)

    Book  Google Scholar 

Download references

Acknowledgements

This work is part of the research programme RareTrans with project number HTSM-15376, which is (partly) financed by the Netherlands Organisation for Scientific Research (NWO). The support of ASML of the RareTrans programme is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. R. A. Abdelmalik .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Abdelmalik, M.R.A., van Brummelen, H. (2020). Entropy Stable Discontinuous Galerkin Finite Element Moment Methods for Compressible Fluid Dynamics. In: van Brummelen, H., Corsini, A., Perotto, S., Rozza, G. (eds) Numerical Methods for Flows. Lecture Notes in Computational Science and Engineering, vol 132. Springer, Cham. https://doi.org/10.1007/978-3-030-30705-9_8

Download citation

Publish with us

Policies and ethics