Skip to main content

Density-Based Inverse Homogenization with Anisotropically Adapted Elements

  • Chapter
  • First Online:
Book cover Numerical Methods for Flows

Abstract

The optimization of manufacturable extremal elastic materials can be carried out via topology optimization using the homogenization method. We combine here a standard density-based inverse homogenization technique with an anisotropic mesh adaptation procedure in the context of a finite element discretization. In this way, the optimized layouts are intrinsically smooth and ready to be manufactured.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Andreassen, E., Andreasen, C.S.: How to determine composite material properties using numerical homogenization. Comput. Mater. Sci. 83, 488–495 (2014)

    Article  Google Scholar 

  2. Bendsøe, M.P., Sigmund, O.: Topology Optimization – Theory, Methods and Applications. Springer, Berlin (2003)

    Google Scholar 

  3. Bensoussan, A., Lions, J.L., Papanicolaou, G.: Asymptotic Analysis for Periodic Structures. AMS Chelsea Publishing, Providence (2011)

    MATH  Google Scholar 

  4. Bertsekas, D.P.: Constrained Optimization and Lagrange Multiplier Methods. Computer Science and Applied Mathematics. Academic, New York (1982)

    MATH  Google Scholar 

  5. Brezis, H.: Functional Analysis, Sobolev Spaces and Partial Differential Equations. Universitext. Springer, New York (2011)

    MATH  Google Scholar 

  6. Chung, P.W., Tamma, K.K., Namburu, R.R.: Homogenization of temperature-dependent thermal conductivity in composite materials. J. Thermophys. Heat Transf. 15(1), 10–17 (2001)

    Article  Google Scholar 

  7. Ciarlet, P.G.: The Finite Element Method for Elliptic Problems. North-Holland, Amsterdam (1978)

    MATH  Google Scholar 

  8. Curtis, F.E., Schenk, O., Wächter, A.: An interior-point algorithm for large-scale nonlinear optimization with inexact step computations. SIAM J. Sci. Comput. 32(6), 3447–3475 (2010)

    Article  MathSciNet  Google Scholar 

  9. Farrell, P.E., Micheletti, S., Perotto, S.: An anisotropic Zienkiewicz-Zhu-type error estimator for 3D applications. Int. J. Numer. Methods Eng. 85(6), 671–692 (2011)

    Article  MathSciNet  Google Scholar 

  10. Frey, P.J., George, P.L.: Mesh Generation: Application to Finite Elements. Wiley, Hoboken (2008)

    Book  Google Scholar 

  11. Gould, P.L.: Introduction to Linear Elasticity. Springer, Paris (1994)

    Book  Google Scholar 

  12. Hashin, Z., Shtrikman, S.: A variational approach to the theory of the effective magnetic permeability of multiphase materials. J. Appl. Phys. 33(10), 3125–3131 (1962)

    Article  Google Scholar 

  13. Hecht, F.: New development in freefem++. J. Numer. Math. 20(3–4), 251–266 (2012)

    MathSciNet  MATH  Google Scholar 

  14. Larsen, U.D., Signund, O., Bouwsta, S.: Design and fabrication of compliant micromechanisms and structures with negative Poisson’s ratio. J. Microelectron. Syst. 6(2), 99–106 (1997)

    Article  Google Scholar 

  15. Lazarov, B.S., Sigmund, O.: Filters in topology optimization based on Helmholtz-type differential equations. Int. J. Numer. Methods Eng. 86(6), 765–781 (2011)

    Article  MathSciNet  Google Scholar 

  16. Micheletti, S., Perotto, S.: Anisotropic adaptation via a Zienkiewicz–Zhu error estimator for 2D elliptic problems. In: Kreiss, G., Lötstedt, P., Målqvist, A., Neytcheva, M. (eds.), Numerical Mathematics and Advanced Applications, pp. 645–653. Springer, Berlin (2010)

    Google Scholar 

  17. Micheletti, S., Perotto, S., Farrell, P.E.: A recovery-based error estimator for anisotropic mesh adaptation in CFD. Bol. Soc. Esp. Mat. Apl. SeMA 50, 115–137 (2010)

    MathSciNet  MATH  Google Scholar 

  18. Micheletti, S., Perotto, S., Soli, L.: Ottimizzazione topologica adattativa per la fabbricazione stratificata additiva (2017). Italian patent application No. 102016000118131, filed on November 22, 2016 (extended as Adaptive topology optimization for additive layer manufacturing, International patent application PCT No. PCT/IB2017/057323)

    Google Scholar 

  19. Neves, M.M., Rodrigues, H., Guedes, J.M.: Optimal design of periodic linear elastic microstructures. Comput. Struct. 76(1–3), 421–429 (2000)

    Article  Google Scholar 

  20. Sánchez-Palencia, E.: Homogenization Method for the Study of Composite Media. In: Asymptotic Analysis, II. Lecture Notes in Mathematics, vol. 985, pp. 192–214. Springer, Berlin (1983)

    Google Scholar 

  21. Sigmund, O.: Design of Material Structures Using Topology Optimization. Technical University of Denmark, Lyngby (1994)

    Google Scholar 

  22. Sigmund, O.: Materials with prescribed constitutive parameters: an inverse homogenization problem. Int. J. Solids Struct. 31(17), 2313–2329 (1994)

    Article  MathSciNet  Google Scholar 

  23. Sigmund, O., Petersson, J.: Numerical instabilities in topology optimization: a survey on procedures dealing with checkerboards, mesh-dependencies and local minima. Struct. Multidiscip. Optim. 16(1), 68–75 (1998)

    Article  Google Scholar 

  24. Yin, L., Ananthasuresh, G.: Topology optimization of compliant mechanisms with multiple materials using a peak function material interpolation scheme. Struct. Multidiscip. Optim. 23(1), 49–62 (2001)

    Article  Google Scholar 

  25. Zienkiewicz, O.C., Zhu, J.Z.: A simple error estimator and adaptive procedure for practical engineering analysis. Int. J. Numer. Methods Eng. 24(2), 337–357 (1987)

    Article  MathSciNet  Google Scholar 

  26. Zuo, W., Saitou, K.: Multi-material topology optimization using ordered SIMP interpolation. Struct. Multidiscip. Optim. 55(2), 477–491 (2017)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicola Ferro .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ferro, N., Micheletti, S., Perotto, S. (2020). Density-Based Inverse Homogenization with Anisotropically Adapted Elements. In: van Brummelen, H., Corsini, A., Perotto, S., Rozza, G. (eds) Numerical Methods for Flows. Lecture Notes in Computational Science and Engineering, vol 132. Springer, Cham. https://doi.org/10.1007/978-3-030-30705-9_19

Download citation

Publish with us

Policies and ethics