Skip to main content

On the Sensitivity to Model Parameters in a Filter Stabilization Technique for Advection Dominated Advection-Diffusion-Reaction Problems

  • Chapter
  • First Online:
  • 875 Accesses

Part of the book series: Lecture Notes in Computational Science and Engineering ((LNCSE,volume 132))

Abstract

We consider a filter stabilization technique with a deconvolution-based indicator function for the simulation of advection dominated advection-diffusion-reaction (ADR) problems with under-refined meshes. The proposed technique has been previously applied to the incompressible Navier-Stokes equations and has been successfully validated against experimental data. However, it was found that some key parameters in this approach have a strong impact on the solution. To better understand the role of these parameters, we consider ADR problems, which are simpler than incompressible flow problems. For the implementation of the filter stabilization technique to ADR problems we adopt a three-step algorithm that requires (1) the solution of the given problem on an under-refined mesh, (2) the application of a filter to the computed solution, and (3) a relaxation step. We compare our deconvolution-based approach to classical stabilization methods and test its sensitivity to model parameters on a 2D benchmark problem.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Alnæs, M.S., Blechta, J., Hake, J., Johansson, A., Kehlet, B., Logg, A., Richardson, C., Ring, J., Rognes, M.E., Wells, G.N.: The FEniCS Project version 1.5. Arch. Numer. Softw. 3(100), (2015)

    Google Scholar 

  2. Bertagna, L., Quaini, A., Veneziani, A.: Deconvolution-based nonlinear filtering for incompressible flows at moderately large Reynolds numbers. Int. J. Numer. Methods Fluids 81(8), 463–488 (2016)

    Article  MathSciNet  Google Scholar 

  3. Bertagna, L., Quaini, A., Rebholz, L.G., Veneziani, A.: On the sensitivity to the filtering radius in Leray models of incompressible flow. In: Computational Methods in Applied Sciences. Springer-ECCOMAS series, pp. 111–130. Springer, Cham (2019)

    MATH  Google Scholar 

  4. Bowers, A.L., Rebholz, L.G.: Numerical study of a regularization model for incompressible flow with deconvolution-based adaptive nonlinear filtering. Comput. Methods Appl. Mech. Eng. 258, 1–12 (2013)

    Article  MathSciNet  Google Scholar 

  5. Bowers, A.L., Rebholz, L.G., Takhirov, A., Trenchea, C.: Improved accuracy in regularization models of incompressible flow via adaptive nonlinear filtering. Int. J. Numer. Methods Fluids 70(7), 805–828 (2012)

    Article  MathSciNet  Google Scholar 

  6. Brooks, A.N., Hughes, T.J.R.: Streamline upwind/Petrov-Galerkin formulations for convection dominated flows with particular emphasis on the incompressible Navier-Stokes equation. Comput. Methods Appl. Mech. Eng. 32, 199–259 (1982)

    Article  MathSciNet  Google Scholar 

  7. Codina, R.: A discontinuity-capturing crosswind-dissipation for the finite element solution of the convection-diffusion equation. Comput. Methods Appl. Mech. Eng. 110(3), 325–342 (1993)

    Article  MathSciNet  Google Scholar 

  8. Codina, R.: Comparison of some finite element methods for solving the diffusion-convection-reaction equation. Comput. Methods Appl. Mech. Eng. 156, 185–210 (1998)

    Article  MathSciNet  Google Scholar 

  9. de Sampaio, P.A.B., Coutinho, A.L.G.A.: A natural derivation of discontinuity capturing operator for convection-diffusion problems. Comput. Methods Appl. Mech. Eng. 190(46), 6291–6308 (2001)

    Article  MathSciNet  Google Scholar 

  10. Douglas, J., Wang, J.: An absolutely stabilized finite element method for the Stokes problem. Math. Comp. 52, 495–508 (1989)

    Article  MathSciNet  Google Scholar 

  11. Dunca, A., Epshteyn, Y.: On the Stolz-Adams deconvolution model for the large-eddy simulation of turbulent flows. SIAM J. Math. Anal. 37(6), 1980–1902 (2005)

    MathSciNet  MATH  Google Scholar 

  12. Ervin, V.J., Layton, W.J., Neda, M.: Numerical analysis of filter-based stabilization for evolution equations. SIAM J. Numer. Anal. 50(5), 2307–2335 (2012)

    Article  MathSciNet  Google Scholar 

  13. FEniCS Project. https://fenicsproject.org

  14. Germano, M.: Differential filters of elliptic type. Phys. Fluids 29, 1757–1758 (1986)

    Article  MathSciNet  Google Scholar 

  15. Hughes, T.J.R.: Multiscale phenomena: green’s function, the Dirichlet-to-Neumann formulation, subgrid scale models, bubbles and the origins of stabilized formulations. Comput. Methods Appl. Mech. Eng. 127, 387–401 (1995)

    Article  Google Scholar 

  16. Hughes, T.J.R., Brooks, A.N.: A multidimensional upwind scheme with no crosswind diffusion. In: Hughes, T.J.R. (ed.), FEM for Convection Dominated Flows. ASME, New York (1979)

    Google Scholar 

  17. Hughes, T.J.R., Mallet, M.: A new finite element formulation for computational fluid dynamics: IV. A discontinuity-capturing operator for multidimensional advective-diffusive systems. Comput. Methods Appl. Mech. Eng. 58(3), 329–336 (1986)

    MATH  Google Scholar 

  18. Hughes, T.J.R., Franca, L.P., Hulbert, G.M.: A new finite element formulation for computational fluid dynamics: VIII. The Galerkin/least-squares method for advective-diffusive equations. Comput. Methods Appl. Mech. Eng. 73, 173–189 (1989)

    Article  Google Scholar 

  19. Hunt, J.C., Wray, A.A., Moin, P.: Eddies Stream and Convergence Zones in Turbulent Flows. Technical Report CTR-S88, CTR report (1988)

    Google Scholar 

  20. John, V., Schmeyer, E.: Finite element methods for time-dependent convection-diffusion-reaction equations with small diffusion. Comput. Methods Appl. Mech. Eng. 198(3), 475–494 (2008)

    Article  MathSciNet  Google Scholar 

  21. Kuzmin, D.: A Guide to Numerical Methods for Transport Equations. University Erlangen-Nuremberg, Erlangen (2010)

    Google Scholar 

  22. Layton, W., Rebholz, L.G., Trenchea, C.: Modular nonlinear filter stabilization of methods for higher Reynolds numbers flow. J. Math. Fluid Mech. 14, 325–354 (2012)

    Article  MathSciNet  Google Scholar 

  23. Logg, A., Mardal, K.-A., Wells, G.N., et al.: Automated Solution of Differential Equations by the Finite Element Method. Springer, Heidelberg (2012)

    Book  Google Scholar 

  24. Quarteroni, A., Valli, A.: Numerical Approximation of Partial Differential Equations. Springer, Heidelberg (1994)

    Book  Google Scholar 

  25. Vreman, A.W.: An eddy-viscosity subgrid-scale model for turbulent shear flow: algebraic theory and applications. Phys. Fluids 16(10), 3670–3681 (2004)

    Article  Google Scholar 

  26. Xu, H., Piccinelli, M., Leshnower, B.G., Lefieux, A., Taylor, W.R., Veneziani, A.: Coupled morphological–hemodynamic computational analysis of type B aortic dissection: a longitudinal study. Ann. Biomed. Eng. 46(7), 927–939 (2018)

    Article  Google Scholar 

Download references

Acknowledgement

This research has been supported in part by the NSF under grants DMS-1620384.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Annalisa Quaini .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bicol, K., Quaini, A. (2020). On the Sensitivity to Model Parameters in a Filter Stabilization Technique for Advection Dominated Advection-Diffusion-Reaction Problems. In: van Brummelen, H., Corsini, A., Perotto, S., Rozza, G. (eds) Numerical Methods for Flows. Lecture Notes in Computational Science and Engineering, vol 132. Springer, Cham. https://doi.org/10.1007/978-3-030-30705-9_12

Download citation

Publish with us

Policies and ethics