Skip to main content

Novel Directions for Autonomous Underwater Vehicle Navigation in Confined Spaces

  • Chapter
  • First Online:
AI Technology for Underwater Robots

Abstract

This position paper presents initial thoughts on how some techniques from general robotics can help for autonomous underwater vehicle (AUV) navigation in confined spaces by exploiting in particular the spatial borders and considering information that is not available in open waters. There are natural confined spaces, e.g. caves, as well as artificial ones, e.g. tripods of off-shore wind turbines or underwater oil-and-gas facilities, which make this application interesting. We argue that the common AUV perceptual system with forward looking camera and/or sonar has deficits for measuring structures in the immediate surrounding of the AUV. This surrounding, however, is particularly important in confined spaces where the AUV cannot be seen as a “point in space” but its physical extension needs to be considered. Distant environment features that are observed in the remote sensors can be mapped, but later, when the AUV comes closer and the remote sensors cannot observe them anymore, they might not be directly usable for localization using these sensors. However, we still see the opportunity to make use of them and, moreover, to generate new features by other means. How this can be achieved is the central idea we want to convey here.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Agarwal S, Mierle K et al Ceres solver. http://ceres-solver.org. Accessed 6/2018

  2. Band S, Gissler C, Ihmsen M, Cornelis J, Peer A, Teschner M (2018) Pressure boundaries for implicit incompressible SPH. ACM Trans Graph (TOG) 37(2):14

    Article  Google Scholar 

  3. Bar-Shalom Y, Li X, Kirubarajan T (2001) Estimation with applications to tracking and navigation. Wiley

    Google Scholar 

  4. Bryson M, Johnson-Roberson M, Pizarro O, Williams SB (2016) True color correction of autonomous underwater vehicle imagery. J Field Robot 33(6):853–874

    Article  Google Scholar 

  5. Cadena C, Carlone L, Carrillo H, Latif Y, Scaramuzza D, Neira J, Reid I, Leonard JJ (2016) Past, present, and future of simultaneous localization and mapping: toward the robust-perception age. IEEE Trans Robot 32(6):1309–1332

    Article  Google Scholar 

  6. Campos R, Garcia R, Alliez P, Yvinec M (2015) A surface reconstruction method for in-detail underwater 3d optical mapping. Int J Robot Res 34(1):64–89

    Article  Google Scholar 

  7. Fairfield N, Kantor G, Jonak D, Wettergreen D (2008) DEPTHX autonomy software: Design and field results. Technical Report CMU-RI-TR-08-09, Carnegie Mellon University

    Google Scholar 

  8. Fox C, Evans M, Pearson M, Prescott T (2012) Tactile slam with a biomimetic whiskered robot. In: 2012 IEEE international conference on robotics and automation (ICRA). IEEE, pp 4925–4930

    Google Scholar 

  9. Fuentes-Pacheco J, Ruiz-Ascencio J, Rendón-Mancha JM (2015) Visual simultaneous localization and mapping: a survey. Artif Intell Rev 43(1):55–81

    Article  Google Scholar 

  10. Goodall C, Carmichael S, Scannell B (2013) The battle between MEMS and fogs for precision guidance. Technical report MS-2432, Analog Devices, Inc. http://www.analog.com/media/en/technical-documentation/tech-articles/The-Battle-Between-MEMS-and-FOGs-for-Precision-Guidance-MS-2432.pdf

  11. Haidacher S, Hirzinger G (2003) Estimating finger contact location and object pose from contact measurements in 3d grasping. In: IEEE international conference on robotics and automation. Proceedings, ICRA’03, vol 2. IEEE, pp 1805–1810

    Google Scholar 

  12. Hertzberg C, Wagner R, Frese U, Schröder L (2013) Integrating generic sensor fusion algorithms with sound state representations through encapsulation of manifolds. Inf Fusion 14(1):57–77

    Article  Google Scholar 

  13. Hidalgo-Carrio J, Babu A, Kirchner F (2014) Static forces weighted Jacobian motion models for improved Odometry. In: 2014 IEEE/RSJ international conference on intelligent robots and systems (IROS 2014). IEEE, pp 169–175

    Google Scholar 

  14. Hildebrandt M, Gaudig C, Christensen L, Natarajan S, Paranhos P, Albiez J (2012) Two years of experiments with the AUV Dagon-a versatile vehicle for high precision visual mapping and algorithm evaluation. In: Proceedings of the 2012 IEEE/OES autonomous underwater vehicles (AUV), Southampton, UK, pp 24–27

    Google Scholar 

  15. Johnson-Roberson M, Pizarro O, Williams SB, Mahon I (2010) Generation and visualization of large-scale three-dimensional reconstructions from underwater robotic surveys. J Field Robot 27(1):21–51

    Article  Google Scholar 

  16. Kalyan TS, Zadeh PA, Staub-French S, Froese TM (2016) Construction quality assessment using 3d as-built models generated with project tango. Procedia Eng 145:1416–1423

    Article  Google Scholar 

  17. Kollmitz M, Büscher D, Schubert T, Burgard W (2018) Whole-body sensory concept for compliant mobile robots. In: Proceedings of the IEEE international conference on robotics & automation (ICRA), Brisbane, Australia. http://ais.informatik.uni-freiburg.de/publications/papers/kollmitz18icra.pdf

  18. Kümmerle R, Grisetti G, Strasdat H, Konolige K, Burgard W (2011) \({\rm G}^{2}{\rm o}\): a general framework for graph optimization. In: 2011 IEEE international conference on robotics and automation (ICRA). IEEE, pp 3607–3613

    Google Scholar 

  19. Leonard JJ, Bahr A (2016) Autonomous underwater vehicle navigation. In: Springer handbook of ocean engineering (Chapter 14). Springer, pp 341–358

    Google Scholar 

  20. Lewis D (1994) We, the navigators: the ancient art of landfinding in the Pacific. University of Hawaii Press

    Google Scholar 

  21. Mur-Artal R, Montiel JMM, Tardos JD (2015) ORB-SLAM: a versatile and accurate monocular slam system. IEEE Trans Robot 31(5):1147–1163

    Article  Google Scholar 

  22. Newcombe RA, Lovegrove SJ, Davison AJ (2011) DTAM: dense tracking and mapping in real-time. In: 2011 IEEE international conference on computer vision (ICCV). IEEE, pp 2320–2327

    Google Scholar 

  23. Nicosevici T, Gracias N, Negahdaripour S, Garcia R (2009) Efficient three-dimensional scene modeling and mosaicing. J Field Robot 26(10):759–788

    Article  Google Scholar 

  24. Nortek group: New to subsea navigation? https://www.nortekgroup.com/insight/nortek-wiki/new-to-subsea-navigation. Accessed 12 Oct 2018

  25. Pfingsthorn M, Birk A, Buelow H (2012) Uncertainty estimation for a 6-DoF spectral registration method as basis for sonar-based underwater 3d SLAM. In: 2012 IEEE international conference on robotics and automation (ICRA). IEEE, pp 3049–3054

    Google Scholar 

  26. Pizarro O, Eustice R, Singh H (2004) Large area 3d reconstructions from underwater surveys. In: MTS/IEEE OCEANS conference and exhibition. Citeseer, pp 678–687

    Google Scholar 

  27. Plagemann C, Kersting K, Burgard W (2008) Nonstationary Gaussian process regression using point estimates of local smoothness. In: Proceedings of the European conference on machine learning (ECML), Antwerp, Belgium. http://ais.informatik.uni-freiburg.de/publications/papers/plagemann08ecml.pdf

  28. Schwendner J, Joyeux S, Kirchner F (2014) Using embodied data for localization and mapping. J Field Robot 31(2):263–295

    Article  Google Scholar 

  29. Sonardyne: Syrinx-doppler velocity log specifications. Technical report (2017). https://www.sonardyne.com/product/syrinx-doppler-velocity-log/

  30. Stachniss C, Grisetti G, Burgard W (2005) Information gain-based exploration using rao-blackwellized particle filters. In: Robotics: science and systems, vol 2, pp 65–72

    Google Scholar 

  31. Stolpmann A (2016) Innenraumfußgängerverfolgung mit inertialsensoren und gebäudeplänen. Master’s thesis, Universität Bremen. www.uni-bremen.de

  32. Strasdat H, Stachniss C, Burgard W (2009) Which landmark is useful? learning selection policies for navigation in unknown environments. In: Proceedings of the IEEE international conference on robotics & automation (ICRA), Kobe, Japan. https://doi.org/10.1109/ROBOT.2009.5152207

  33. Whelan T, Salas-Moreno RF, Glocker B, Davison AJ, Leutenegger S (2016) Elasticfusion: real-time dense slam and light source estimation. Int J Robot Res 35(14):1697–1716

    Article  Google Scholar 

  34. Williams SB, Pizarro OR, Jakuba MV, Johnson CR, Barrett NS, Babcock RC, Kendrick GA, Steinberg PD, Heyward AJ, Doherty PJ et al (2012) Monitoring of benthic reference sites: using an autonomous underwater vehicle. IEEE Robot Autom Mag 19(1):73–84

    Article  Google Scholar 

  35. Woodman O, Harle R (2008) Pedestrian localisation for indoor environments. In: Proceedings of the 10th international conference on ubiquitous computing. ACM, pp 114–123

    Google Scholar 

  36. YSI: i3XO EcoMapper AUV. https://www.ysi.com/ecomapper. Accessed 14 Oct 2018

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Udo Frese or Daniel Büscher .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Frese, U., Büscher, D., Burgard, W. (2020). Novel Directions for Autonomous Underwater Vehicle Navigation in Confined Spaces. In: Kirchner, F., Straube, S., Kühn, D., Hoyer, N. (eds) AI Technology for Underwater Robots. Intelligent Systems, Control and Automation: Science and Engineering, vol 96. Springer, Cham. https://doi.org/10.1007/978-3-030-30683-0_14

Download citation

Publish with us

Policies and ethics