Skip to main content

Underwater Multi-modal Sensing for Environmental Mapping and Vehicle Navigation

  • Chapter
  • First Online:
AI Technology for Underwater Robots

Abstract

Navigating autonomously underwater, where a priori information on the environment is sparse and changing ambient conditions complicate perception, requires robust sensing capabilities as well as advanced signal processing strategies. Multimodality in sensing as well as data processing is considered as an approach to strengthen the robustness of decision making for autonomous underwater robots. This chapter summarizes the current developments in sensing technology and opens new research questions with respect to sensing and signal processing using machine learning approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Albiez J, Joyeux S, Gaudig C, Hilljegerdes J, Kroffke S, Schoo C, Arnold S, Mimoso G, Alcantara P, Saback R, Britto J, Kirchnery, F (2015) FlatFish–a compact subsea-resident inspection AUV. In: OCEANS 2015–MTS/IEEE Washington, (October), pp 1–8. https://doi.org/10.23919/OCEANS.2015.7404442

  2. Boyer F, Lebastard V, Chevallereau C, Mintchev S, Stefanini C (2017) Underwater navigation based on passive electric sense : new perspectives for underwater docking. To cite this version : HAL Id : hal-01201695

    Google Scholar 

  3. Hero AO, Cochran D (2011) Sensor management: past, present, and future. IEEE Sens J 11(12):3064–3075. https://doi.org/10.1109/JSEN.2011.2167964

    Article  Google Scholar 

  4. Jing L, Wang T, Zhao M, Wang P (2017) An adaptive multi-sensor data fusion method based on deep convolutional neural networks for fault diagnosis of planetary gearbox. Sensors 17(2), Switzerland. https://doi.org/10.3390/s17020414

    Article  Google Scholar 

  5. Kampmann P (2016) Development of a multi-modal tactile force sensing system for deep-sea applications (University of Bremen). https://elib.suub.uni-bremen.de/peid=D00105232

  6. Knight WC, Pridham RG, Kay SM (1981) Digital signal processing for sonar. Proc IEEE 69(11):1451–1506. https://doi.org/10.1109/PROC.1981.12186

    Article  Google Scholar 

  7. Kolba MP, Collins LM (2006) Information-theoretic sensor management for multimodal sensing. Int Geosci Remote Sens Symp (IGARSS) 90291(1):3935–3938. https://doi.org/10.1109/IGARSS.2006.1009

    Article  Google Scholar 

  8. Kragh M, Underwood J (2019) Multimodal obstacle detection in unstructured environments with conditional random fields. J Field Robot (August 2018). https://doi.org/10.1002/rob.21866

  9. Krupiński S, Maurelli F, Grenon G, Petillot Y (2008) Investigation of autonomous docking strategies for robotic operation on intervention panels. In: OCEANS 2008, (May 2014), 2002–2005. https://doi.org/10.1109/OCEANS.2008.5151995

  10. Mees O, Eitel A, Burgard W (2016) Choosing smartly: adaptive multimodal fusion for object detection in changing environments. In 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Daejeon, (October), pp 151–156. https://doi.org/10.1109/IROS.2016.7759048

  11. Palomeras N, Ridao P, Ribas D, Vallicrosa G (2014) Autonomous I-AUV docking for fixed-base manipulation. IFAC Proc Vol (IFAC-PapersOnline) 19:12160–12165. https://doi.org/10.3182/20140824-6-ZA-1003.01878

    Article  Google Scholar 

  12. Park JY, Jun BH, Lee PM, Oh JH, Lim YK (2010) Underwater docking approach of an under-actuated AUV in the presence of constant ocean current. IFAC Proc Vol (IFAC-PapersOnline) 43. https://doi.org/10.3182/20100915-3-DE-3008.00065

    Article  Google Scholar 

  13. Rao D, Deuge M De, Vatani NN, Williams SB, Pizarro O (2017) Multimodal learning and inference from visual and remotely sensed data. Int J Robot Res 36(1):24–43. https://doi.org/10.1177/0278364916679892

    Article  Google Scholar 

  14. Schofield O, Kohut J, Aragon D, Creed L, Graver J, Haldeman C, Kerfoot J, Roarty H, Jones C, Webb D, Glenn S (2007) Slocum gliders: robust and ready. J Field Robot 24(6):473–485. https://doi.org/10.1002/rob.20200

    Article  Google Scholar 

  15. Siesjö J (2013) Sabertooth a Seafloor Resident Hybrid AUV/ ROV System for Long Term Deployment in Deep Water and Hostile. Underw Interv Conf 1(13):1–13. http://auvac.org/uploads/publication_pdf/SabertoothAUVUUST2013.pdf

  16. Stewart R, Ermon S (2016) Label-free supervision of neural networks with physics and domain knowledge, vol 1(1)

    Google Scholar 

  17. Wynn RB, Huvenne VAI, Le Bas TP, Murton BJ, Connelly DP, Bett BJ, Ruhl HA, Morris KJ, Peakall J, Parsons DR, Hunt JE (2014) Autonomous underwater vehicles (AUVs): their past, present and future contributions to the advancement of marine geoscience. Mar Geol 352:451–468. https://doi.org/10.1016/j.margeo.2014.03.012

    Article  Google Scholar 

  18. Xiang X, Yu C, Niu Z, Zhang Q (2016) Subsea cable tracking by autonomous underwater vehicle with magnetic sensing guidance. Sensors (Switzerland) 16(8):1–22. https://doi.org/10.3390/s16081335

    Article  Google Scholar 

  19. Zhou M, Deyoung B, Bachmayer R (2016) Towards autonomous underwater iceberg profiling using a mechanical scanning sonar on a underwater slocum glider. In: AUV 2016, (November). https://doi.org/10.1109/AUV.2016.7778656

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Kampmann .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kampmann, P., Bachmayer, R., Büscher, D., Burgard, W. (2020). Underwater Multi-modal Sensing for Environmental Mapping and Vehicle Navigation. In: Kirchner, F., Straube, S., Kühn, D., Hoyer, N. (eds) AI Technology for Underwater Robots. Intelligent Systems, Control and Automation: Science and Engineering, vol 96. Springer, Cham. https://doi.org/10.1007/978-3-030-30683-0_12

Download citation

Publish with us

Policies and ethics