Skip to main content

Alleviating Tracking Model Degradation Using Interpolation-Based Progressive Updating

  • Chapter
  • First Online:
Domain Adaptation for Visual Understanding
  • 645 Accesses

Abstract

Recently, Correlation FilterĀ (CF)-based methods have demonstrated excellent performance for visual object tracking. However, CF-based models often face one model degradation problem: With low learning rate, the tracking model cannot be updated as fast as the large-scale variation or deformation of fast motion targets; As for high learning rate, the tracking model is not robust enough against disturbance, such as occlusion. To enable the tracking model adapt with such variation effectively, a progressive updating mechanism is necessary. In order to exploit spatial and temporal information in original data for tracking model adaptation, we employ an implicit interpolation model. With motion-estimated interpolation using adjacent tracking frames, the obtained intermediate response map can fit the learning rate well, which will effectively alleviate the learning-related model degradation. The evaluations on the benchmark datasets KITTI and VOT2017 demonstrate that the proposed tracker outperforms the existing CF-based models, with advantages regarding the tracking accuracy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Babenko B, Yang MH, Belongie S (2011) Robust object tracking with online multiple instance learning. IEEE Trans Pattern Anal Mach Intell 33(8):1619ā€“1632. https://doi.org/10.1109/TPAMI.2010.226

    ArticleĀ  Google ScholarĀ 

  2. Baker S, Roth S, Scharstein D, Black MJ, Lewis JP, Szeliski R (2007) A database and evaluation methodology for optical flow. In: 2007 IEEE 11th international conference on computer vision, pp 1ā€“8. https://doi.org/10.1109/ICCV.2007.4408903

  3. Bertinetto L, Valmadre J, Golodetz S, Miksik O, Torr PHS (2016) Staple: complementary learners for real-time tracking. In: 2016 IEEE conference on computer vision and pattern recognition (CVPR), pp 1401ā€“1409. https://doi.org/10.1109/CVPR.2016.156

  4. Bolme DS, Beveridge JR, Draper BA, Lui YM (2010) Visual object tracking using adaptive correlation filters. In: 2010 IEEE computer society conference on computer vision and pattern recognition, pp 2544ā€“2550. https://doi.org/10.1109/CVPR.2010.5539960

  5. Dalal N, Triggs B (2005) Histograms of oriented gradients for human detection. In: Conference on computer vision and pattern recognition (CVPR)

    Google ScholarĀ 

  6. Danelljan M, Bhat G, Khan FS, Felsberg M (2017) Eco: efficient convolution operators for tracking. In: 2017 IEEE conference on computer vision and pattern recognition (CVPR), pp 6931ā€“6939. https://doi.org/10.1109/CVPR.2017.733

  7. Danelljan M, H\(\ddot{a}\)ger G, Khan FS, Felsberg M (2015) Learning spatially regularized correlation filters for visual tracking. In: 2015 IEEE international conference on computer vision (ICCV), pp 4310ā€“4318. https://doi.org/10.1109/ICCV.2015.490

  8. Danelljan M, H\(\ddot{a}\)ger G, Khan FS, Felsberg M (2014) Accurate scale estimation for robust visual tracking. In: British machine vision conference, pp 65.1ā€“65.11

    Google ScholarĀ 

  9. Fan H, Ling H (2017) Sanet: structure-aware network for visual tracking. In: 2017 IEEE conference on computer vision and pattern recognition workshops (CVPRW), pp 2217ā€“2224. https://doi.org/10.1109/CVPRW.2017.275

  10. Galoogahi HK, Fagg A, Lucey S (2017) Learning background-aware correlation filters for visual tracking. In: 2017 IEEE international conference on computer vision (ICCV), pp 1144ā€“1152. https://doi.org/10.1109/ICCV.2017.129

  11. Galoogahi HK, Sim T, Lucey S (2013) Multi-channel correlation filters. In: 2013 IEEE international conference on computer vision, pp 3072ā€“3079. https://doi.org/10.1109/ICCV.2013.381

  12. Galoogahi HK, Sim T, Lucey S (2015) Correlation filters with limited boundaries. In: 2015 IEEE conference on computer vision and pattern recognition (CVPR), pp 4630ā€“4638. https://doi.org/10.1109/CVPR.2015.7299094

  13. Gao J, Ling H, Hu W, Xing J (2014) Transfer learning based visual tracking with gaussian processes regression. Springer International Publishing, New York

    ChapterĀ  Google ScholarĀ 

  14. Gao XQ, Duanmu CJ, Zou CR (2000) A multilevel successive elimination algorithm for block matching motion estimation. IEEE Trans Image Process 9(3):501ā€“504. https://doi.org/10.1109/83.826786

    ArticleĀ  Google ScholarĀ 

  15. Geiger A, Lenz P, Urtasun R (2012) Are we ready for autonomous driving? the kitti vision benchmark suite. In: Proceedings of the conference on computer vision and pattern recognition (CVPR)

    Google ScholarĀ 

  16. Henriques JF, Caseiro R, Martins P, Batista J (2015) High-speed tracking with kernelized correlation filters. IEEE Trans Pattern Anal Mach Intell 37(3):583ā€“596. https://doi.org/10.1109/TPAMI.2014.2345390

    ArticleĀ  Google ScholarĀ 

  17. Henriques JF, Carreira J, Rui C, Batista J (2014) Beyond hard negative mining: efficient detector learning via block-circulant decomposition. In: IEEE international conference on computer vision, pp 2760ā€“2767

    Google ScholarĀ 

  18. Kristan M, Matas J, Leonardis A, Vojir T, Pflugfelder R, Fernandez G, Nebehay G, Porikli F, Čehovin L (2016) A novel performance evaluation methodology for single-target trackers. IEEE Trans Pattern Anal Mach Intell 38(11):2137ā€“2155. https://doi.org/10.1109/TPAMI.2016.2516982

    ArticleĀ  Google ScholarĀ 

  19. Li R, Lv Y, Liu Z (2018) Multi-scheme frame rate up-conversion using space-time saliency. IEEE Access 6:1905ā€“1915. https://doi.org/10.1109/ACCESS.2017.2780822

    ArticleĀ  Google ScholarĀ 

  20. Lukežic A, VojĆ­r T, Zajc LC, Matas J, Kristan M (2017) Discriminative correlation filter with channel and spatial reliability. In: 2017 IEEE conference on computer vision and pattern recognition (CVPR), pp. 4847ā€“4856. https://doi.org/10.1109/CVPR.2017.515

  21. Ma C, Yang X, Zhang C, Yang MH (2015) Long-term correlation tracking. In: 2015 IEEE conference on computer vision and pattern recognition (CVPR), pp 5388ā€“5396. https://doi.org/10.1109/CVPR.2015.7299177

  22. Nam H, Han B (2016) Learning multi-domain convolutional neural networks for visual tracking. In: 2016 IEEE conference on computer vision and pattern recognition (CVPR), pp 4293ā€“4302. https://doi.org/10.1109/CVPR.2016.465

  23. Revaud J, Weinzaepfel P, Harchaoui Z, Schmid C (2015) EpicFlow: edge-preserving interpolation of correspondences for optical flow. In: Proceedings of the conference on computer vision and pattern recognition

    Google ScholarĀ 

  24. Rui C, Martins P, Batista J (2012) Exploiting the circulant structure of tracking-by-detection with kernels. In: European conference on computer vision, pp 702ā€“715

    Google ScholarĀ 

  25. Thang NV, Lee HJ (2017) An efficient non-selective adaptive motion compensated frame rate up conversion. In: 2017 IEEE international symposium on circuits and systems (ISCAS), pp 1ā€“4. https://doi.org/10.1109/ISCAS.2017.8050462

  26. Valmadre J, Bertinetto L, Henriques J, Vedaldi A, Torr PHS (2017) End-to-end representation learning for correlation filter based tracking. In: 2017 IEEE conference on computer vision and pattern recognition (CVPR), pp 5000ā€“5008. https://doi.org/10.1109/CVPR.2017.531

  27. Wu Y, Lim J, Yang MH (2013) Online object tracking: a benchmark. In: 2013 IEEE conference on computer vision and pattern recognition, pp 2411ā€“2418. https://doi.org/10.1109/CVPR.2013.312

Download references

Acknowledgements

This work was partly funded by NSFC(NO.61571297), The National Key Research and Development Program (2017YFB1002401), and STCSM(18DZ2270700).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chongyang Zhang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

Ā© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kong, X., Zhou, Q., Lai, Y., Zhao, M., Zhang, C. (2020). Alleviating Tracking Model Degradation Using Interpolation-Based Progressive Updating. In: Singh, R., Vatsa, M., Patel, V., Ratha, N. (eds) Domain Adaptation for Visual Understanding. Springer, Cham. https://doi.org/10.1007/978-3-030-30671-7_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-30671-7_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-30670-0

  • Online ISBN: 978-3-030-30671-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics