Skip to main content

Abstract

Biofilms were unknowingly observed centuries ago. Within the last 70 years, our understanding of biofilms, their morphology, and characteristics has grown. Yet despite an increased understanding, the presence of biofilms and their impact on healthcare are still often overlooked, or misunderstood. Antimicrobial technologies and applications are primarily focused on planktonic bacteria. A targeted approach against the biofilm phenotype is likely to improve infection outcomes wherein biofilms are the source of difficult-to-treat infections.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. ZoBell, C. E. (1943). The effect of solid surfaces upon bacterial activity. Journal of Bacteriology, 46, 39–56.

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Costerton, J. W., Geesey, G. G., & Cheng, K. J. (1978). How bacteria stick. Scientific American, 238, 86–95.

    Article  CAS  Google Scholar 

  3. Hoiby, N. (2017). A short history of microbial biofilms and biofilm infections. APMIS: acta pathologica, microbiologica, et immunologica Scandinavica, 125, 272–275. https://doi.org/10.1111/apm.12686.

    Article  PubMed  Google Scholar 

  4. Donlan, R. M., & Costerton, J. W. (2002). Biofilms: Survival mechanisms of clinically relevant microorganisms. Clinical Microbiology Reviews, 15, 167–193.

    Article  CAS  Google Scholar 

  5. Marrie, T., Nelligan, J., & Costerton, J. (1982). A scanning and transmission electron microscopic study of an infected endocardial pacemaker lead. Circulation, 66, 1339–1341.

    Article  CAS  Google Scholar 

  6. Gristina, A. G., & Costerton, J. W. (1984). Bacteria-laden biofilms: A hazard to orthopedic prostheses. Infections in Surgery, 3, 655–662.

    Google Scholar 

  7. Nickel, J. C., Ruseska, I., Wright, J. B., & Costerton, J. W. (1985). Tobramycin resistance of Pseudomonas aeruginosa cells growing as a biofilm on urinary catheter material. Antimicrobial Agents and Chemotherapy, 27, 619–624.

    Article  CAS  Google Scholar 

  8. Nichols, W. W., Dorrington, S. M., Slack, M. P. E., & Walmsley, H. L. (1988). Inhibition of tobramycin diffusion by binding to alginate. Antimicrobial Agents and Chemotherapy, 32, 518–523.

    Article  CAS  Google Scholar 

  9. Lawrence, J. R., Korber, D. R., Hoyle, B. D., Costerton, J. W., & Caldwell, D. E. (1991). Optical sectioning of microbial biofilms. Journal of Bacteriology, 173, 6558–6567.

    Article  CAS  Google Scholar 

  10. Borriello, G., et al. (2004). Oxygen limitation contributes to antibiotic tolerance of Pseudomonas aeruginosa in biofilms. Antimicrobial Agents and Chemotherapy, 48, 2659–2664.

    Article  CAS  Google Scholar 

  11. Brandwein, M., Steinberg, D., & Meshner, S. (2016). Microbial biofilms and the human skin microbiome. NPJ Biofilms and Microbiomes, 2, 3. https://doi.org/10.1038/s41522-016-0004-z.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Grice, E. A., et al. (2008). A diversity profile of the human skin microbiota. Genome Research, 18, 1043–1050. https://doi.org/10.1101/gr.075549.107.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Clark, J. J. C., Abildgaard, J. T., Backes, J., & Hawkins, R. J. (2018). Preventing infection in shoulder surgery. Journal of Shoulder and Elbow Surgery, 27, 1333–1341. https://doi.org/10.1016/j.jse.2017.12.028.

    Article  PubMed  Google Scholar 

  14. Atesok, K., et al. (2017). Postoperative deep shoulder infections following rotator cuff repair. World Journal of Orthopedics, 8, 612–618. https://doi.org/10.5312/wjo.v8.i8.612.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Kadler, B. K., Mehta, S. S., & Funk, L. (2015). Propionibacterium acnes infection after shoulder surgery. International Journal of Shoulder Surgery, 9, 139–144. https://doi.org/10.4103/0973-6042.167957.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Fink, B., & Sevelda, F. (2017). Periprosthetic joint infection of shoulder arthroplasties: Diagnostic and treatment options. BioMed Research International, 2017, 4582756. https://doi.org/10.1155/2017/4582756.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Nelson, G. N., Davis, D. E., & Namdari, S. (2016). Outcomes in the treatment of periprosthetic joint infection after shoulder arthroplasty: A systematic review. Journal of Shoulder and Elbow Surgery, 25, 1337–1345. https://doi.org/10.1016/j.jse.2015.11.064.

    Article  PubMed  Google Scholar 

  18. Georgy, M., Stern, M., & Murphy, K. (2017). What is the role of the bacterium Propionibacterium acnes in type 1 Modic changes? A review of the literature. Canadian Association of Radiologists journal = Journal l’Association canadienne des radiologistes, 68, 419–424. https://doi.org/10.1016/j.carj.2017.07.004.

    Article  PubMed  Google Scholar 

  19. Ganko, R., Rao, P. J., Phan, K., & Mobbs, R. J. (2015). Can bacterial infection by low virulent organisms be a plausible cause for symptomatic disc degeneration? A systematic review. Spine, 40, E587–E592. https://doi.org/10.1097/BRS.0000000000000832.

    Article  PubMed  Google Scholar 

  20. Uckay, I., et al. (2010). Spondylodiscitis due to Propionibacterium acnes: Report of twenty-nine cases and a review of the literature. Clinical Microbiology and Infection, 16, 353–358. https://doi.org/10.1111/j.1469-0691.2009.02801.x.

    Article  CAS  PubMed  Google Scholar 

  21. Lister, J. (1867). On a new method of treating compound fracture, Abscess, &c., with observations on the conditions of suppuration. Lancet, 336–339.

    Google Scholar 

  22. Worboys, M. J. (2013). Lister and the performance of antiseptic surgery. Notes and Records of the Royal Society of London, 67, 199–209. https://doi.org/10.1098/rsnr.2013.0028.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Edmiston, C. E., Jr., et al. (2013). Reducing the risk of surgical site infections: Does chlorhexidine gluconate provide a risk reduction benefit? American Journal of Infection Control, 41, S49–S55. https://doi.org/10.1016/j.ajic.2012.10.030.

    Article  PubMed  Google Scholar 

  24. Oduwole, K. O., et al. (2010). Anti-biofilm activity of sub-inhibitory povidone-iodine concentrations against Staphylococcus epidermidis and Staphylococcus aureus. Journal of Orthopaedic Research, 28, 1252–1256. https://doi.org/10.1002/jor.21110.

    Article  CAS  PubMed  Google Scholar 

  25. Karpanen, T. J., et al. (2008). Penetration of chlorhexidine into human skin. Antimicrobial Agents and Chemotherapy, 52, 3633–3636. https://doi.org/10.1128/AAC.00637-08.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Okuda, K. I., et al. (2018). The composition and structure of biofilms developed by Propionibacterium acnes isolated from cardiac pacemaker devices. Frontiers in Microbiology, 9, 182. https://doi.org/10.3389/fmicb.2018.00182.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Oliveira, W. F., et al. (2018). Staphylococcus aureus and Staphylococcus epidermidis infections on implants. The Journal of Hospital Infection, 98, 111–117. https://doi.org/10.1016/j.jhin.2017.11.008.

    Article  CAS  PubMed  Google Scholar 

  28. Montanaro, L., et al. (2011). Scenery of Staphylococcus implant infections in orthopedics. Future Microbiology, 6, 1329–1349. https://doi.org/10.2217/fmb.11.117.

    Article  CAS  PubMed  Google Scholar 

  29. Tong, S. Y., Davis, J. S., Eichenberger, E., Holland, T. L., & Fowler, V. G., Jr. (2015). Staphylococcus aureus infections: Epidemiology, pathophysiology, clinical manifestations, and management. Clinical Microbiology Reviews, 28, 603–661. https://doi.org/10.1128/CMR.00134-14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Achermann, Y., Goldstein, E. J., Coenye, T., & Shirtliff, M. E. (2014). Propionibacterium acnes: From commensal to opportunistic biofilm-associated implant pathogen. Clinical Microbiology Reviews, 27, 419–440. https://doi.org/10.1128/CMR.00092-13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Johnston, D. H., Fairclough, J. A., Brown, E. M., & Morris, R. (1987). Rate of bacterial recolonization of the skin after preparation: Four methods compared. The British Journal of Surgery, 74, 64.

    Article  CAS  Google Scholar 

  32. Olson, R. J. (2012). Hypodermic needle system and method of use to reduce infection. USA patent.

    Google Scholar 

  33. Williams, D. L., & Costerton, J. W. (2011). Using biofilms as initial inocula in animal models of biofilm-related infections. Journal of Biomedical Materials Research, 100, 1163–1169.

    PubMed  Google Scholar 

  34. Williams, D. L., et al. (2012). In vivo efficacy of a silicone – cationic steroid antimicrobial coating to prevent implant-related infection. Biomaterials, 33, 8641–8656.

    Article  CAS  Google Scholar 

  35. Williams, D. L., et al. (2012). Experimental model of biofilm implant-related osteomyelitis to test combination biomaterials using biofilms as initial inocula. Journal of Biomedical Materials Research Part A, 100, 1888–1900.

    Article  Google Scholar 

  36. Costerton, J. W. (2007). In J. W. Costerton (Ed.), The Biofilm Primer (pp. 5–13). Springer-Verlage Berlin Heidelberg.

    Google Scholar 

  37. Rasmussen, R. M., Epperson, R. T., Taylor, N. B., & Williams, D. L. (2019). Plume height and surface coverage analysis of methicillin-resistant Staphylococcus aureus isolates grown in a CDC biofilm reactor. Biofouling, 35(4), 463–471.

    Article  CAS  Google Scholar 

  38. Farha, M. A., & Brown, E. D. (2019). Drug repurposing for antimicrobial discovery. Nature Microbiology, 4, 565–577. https://doi.org/10.1038/s41564-019-0357-1.

    Article  CAS  PubMed  Google Scholar 

Download references

Disclaimer

The opinions and information presented in this chapter are those of the author and do not necessarily reflect the position or policy of the Department of Veterans Affairs or the US Government.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dustin L. Williams .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Williams, D.L. (2019). We Begin to Target the Biofilm. In: Williams, D. (eds) Targeting Biofilms in Translational Research, Device Development, and Industrial Sectors. Springer, Cham. https://doi.org/10.1007/978-3-030-30667-0_1

Download citation

Publish with us

Policies and ethics