Skip to main content

Part of the book series: Studies in Systems, Decision and Control ((SSDC,volume 249))

  • 457 Accesses

Abstract

As mentioned in the general introduction, it is not always possible to use sensors for measurements, either due to prohibitive costs of the sensing technology or because the quantity is not directly measurable. For precise control applications, state observer can be used for obtaining unavailable state values instead of sensors. A brief survey of existing methods in order to define the context of our work.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Adetola, V., Guay, M.: Finite-time parameter estimation in adaptive control of nonlinear systems. IEEE Trans. Autom. Control. 53(3), 807–811 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  2. Arcak, M., Görgün, H., Pedersen, L.M., Varigonda, S.: A nonlinear observer design for fuel cell hydrogen estimation. IEEE Trans. Control. Syst. Technol. 12(1), 101–110 (2004)

    Article  Google Scholar 

  3. Arcak, M., Kokotovic, P.: Observer-based control of systems with slope-restricted nonlinearities. IEEE Trans. Autom. Control. 46(7), 1146–1150 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  4. Arce, A., Alejandro, J., Bordons, C., Ramirez, D.R.: Real-time implementation of a constrained MPC for efficient airflow control in a PEM fuel cell. IEEE Trans. Ind. Electron. 57(6), 1892–1905 (2009)

    Article  Google Scholar 

  5. Barbir, F., Gorgun, H., Wang, X.: Relationship between pressure drop and cell resistance as a diagnostic tool for PEM fuel cells. J. Power Sources 141(1), 96–101 (2005)

    Article  Google Scholar 

  6. Bhat, S., Bernstein, D.: Finite-time stability of continuous autonomous systems. SIAM J. Control. Optim. 38(3), 751–766 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  7. Chen, F., Chu, H.S., Soong, C.Y., Yan, W.M.: Effective schemes to control the dynamic behavior of the water transport in the membrane of PEM fuel cell. J. Power Sources 140(2), 243–249 (2005)

    Article  Google Scholar 

  8. Chen, P.C.: Output-feedback voltage tracking control for input-constrained PEM fuel cell systems. Int. J. Hydrog. Energy 36(22), 14608–14621 (2011)

    Article  Google Scholar 

  9. Choe, S.Y., Ahn, J.W., Lee, J.G., Baek, S.H.: Dynamic simulator for a PEM fuel cell system with a PWM DC/DC converter. IEEE Trans. Energy Convers. 23(2), 669–680 (2008)

    Article  Google Scholar 

  10. Diop, S., Grizzle, J., Moraal, P., Stefanopoulou, A.: Interpolation and numerical differentiation for observer design. In: Proceedings of the American Control Conference, vol. 2, pp. 1329–1329. American Automatic Control Council (1994)

    Google Scholar 

  11. Fan, X., Arcak, M.: Observer design for systems with multivariable monotone nonlinearities. Syst. Control. Lett. 50(4), 319–330 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  12. Gao, F., Blunier, B., Simoes, M.G., Miraoui, A.: PEM fuel cell stack modeling for real-time emulation in hardware-in-the-loop applications. IEEE Trans. Energy Convers. 26(1), 184–194 (2011)

    Article  Google Scholar 

  13. Gauthier, J.P., Hammouri, H., Othman, S.: A simple observer for nonlinear systems applications to bioreactors. IEEE Trans. Autom. Control. 37(6), 875–880 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  14. Görgün, H., Arcak, M., Barbir, F.: An algorithm for estimation of membrane water content in PEM fuel cells. J. Power Sources 157(1), 389–394 (2006)

    Article  Google Scholar 

  15. Görgün, H., Arcak, M., Varigonda, S., Bortoff, S.A.: Observer designs for fuel processing reactors in fuel cell power systems. Int. J. Hydrog. Energy 30(4), 447–457 (2005)

    Article  Google Scholar 

  16. Grove, W., Egeland, O.: A small voltaic battery of great energy. Philos. Mag. 15, 287–293 (1839)

    Google Scholar 

  17. Ibrir, S.: Online exact differentiation and notion of asymptotic algebraic observers. IEEE Trans. Autom. Control 48(11), 2055–2060 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  18. Ibrir, S.: Algebraic observer design for a class of uniformly-observable nonlinear systems: application to 2-link robotic manipulator. In: 2009 7th Asian Control Conference, pp. 390–395. IEEE (2009)

    Google Scholar 

  19. Ingimundarson, A., Stefanopoulou, A.G., McKay, D.A.: Model-based detection of hydrogen leaks in a fuel cell stack. IEEE Trans. Control. Syst. Technol 16(5), 1004–1012 (2008)

    Article  Google Scholar 

  20. Isidori, A.: Nonlinear control systems, vol. 1. Springer (1995)

    Google Scholar 

  21. Jemeï, S., Hissel, D., Pera, M.C., Kauffmann, J.M.: A new modeling approach of embedded fuel-cell power generators based on artificial neural network. IEEE Trans. Ind. Electron. 55(1), 437–447 (2008)

    Article  Google Scholar 

  22. Jung, J.H., Ahmed, S., Enjeti, P.: PEM fuel cell stack model development for real-time simulation applications. IEEE Trans. Ind. Electron. 58(9), 4217–4231 (2011)

    Article  Google Scholar 

  23. Karnik, A.Y., Sun, J., Stefanopoulou, A.G., Buckland, J.H.: Humidity and pressure regulation in a PEM fuel cell using a gain-scheduled static feedback controller. IEEE Trans. Control. Syst. Technol. 17(2), 283–297 (2009)

    Article  Google Scholar 

  24. Khalil, H.K.: Nonlinear Systems. Prentice Hall (2001)

    Google Scholar 

  25. Kirubakaran, A., Jain, S., Nema, R.K.: A review on fuel cell technologies and power electronic interface. Renew. Sustain. Energy Rev. 13(9), 2430–2440 (2009)

    Article  Google Scholar 

  26. Kunusch, C., Moreno, J., Angulo, M.: Identification and observation in the anode line of PEM fuel cell stacks. In: IEEE 52nd Annual Conference on Decision and Control (CDC), pp. 1665–1670. IEEE (2013)

    Google Scholar 

  27. Larminie, J., Dicks, A., McDonald, M.S.: Fuel Cell Systems Explained, vol. 2. Wiley, Chichester (2003)

    Book  Google Scholar 

  28. Levant, A.: Sliding order and sliding accuracy in sliding mode control. Int. J. Control 58(6), 1247–1263 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  29. Levant, A.: Robust exact differentiation via sliding mode technique. Automatica 34(3), 379–384 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  30. Levant, A.: Higher-order sliding modes, differentiation and output-feedback control. Int. J. Control 76(9–10), 924–941 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  31. Li, Q., Chen, W., Wang, Y., Jia, J., Han, M.: Nonlinear robust control of proton exchange membrane fuel cell by state feedback exact linearization. J. Power Sources 194(1), 338–348 (2009)

    Article  Google Scholar 

  32. Lira, S.D., Puig, V., Quevedo, J., Husar, A.: LPV observer design for PEM fuel cell system: Application to fault detection. J. Power Sources 196(9), 4298–4305 (2011)

    Article  Google Scholar 

  33. Liu, J., Laghrouche, S., Ahmed, F.S., Wack, M.: PEM fuel cell air-feed system observer design for automotive applications: an adaptive numerical differentiation approach. Int. J. Hydrog. Energy 39(30), 210–17 (2014)

    Article  Google Scholar 

  34. Ljung, L., Glad, T.: On global identifiability for arbitrary model parametrizations. Automatica 30(2), 265–276 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  35. Matraji, I., Laghrouche, S., Wack, M.: Pressure control in a PEM fuel cell via second order sliding mode. Int. J. Hydrog. Energy 37(21), 16104–16116 (2012)

    Article  Google Scholar 

  36. Moreno, J., Osorio, M.: A Lyapunov approach to second-order sliding mode controllers and observers. In: 47th IEEE Conference on Decision and Control (CDC), pp. 2856–2861. IEEE (2008)

    Google Scholar 

  37. Moreno, J.A.: Lyapunov function for Levant’s second order differentiator. In: IEEE 51st Annual Conference on Decision and Control (CDC), pp. 6448–6453. IEEE (2012)

    Google Scholar 

  38. Murshed, A., Huang, B., Nandakumar, K.: Estimation and control of solid oxide fuel cell system. Comput. Chem. Eng. 34(1), 96–111 (2010)

    Article  Google Scholar 

  39. Na, W.K., Gou, B.: Feedback-linearization-based nonlinear control for pem fuel cells. IEEE Trans. Energy Convers. 23(1), 179–190 (2008)

    Article  Google Scholar 

  40. Paja, C.A.R., Nevado, A.R., Castillón, R.G., Martinez-Salamero, L., Saenz, C.I.S.: Switching and linear power stages evaluation for PEM fuel cell emulation. Int. J. Circuit Theory Appl. 39(5), 475–499 (2011)

    Article  Google Scholar 

  41. Pukrushpan, J., Peng, H., Stefanopoulou, A.: Control-oriented modeling and analysis for automotive fuel cellsystems. ASME J. Dyn. Syst. Meas. Control. 126(1), 14–25 (2004)

    Article  Google Scholar 

  42. Pukrushpan, J., Stefanopoulou, A., Peng, H.: Control of fuel cell breathing. IEEE Control Syst. 24(2), 30–46 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  43. Pukrushpan, J., Stefanopoulou, A., Peng, H.: Control of fuel cell breathing: initial results on the oxygen starvation problem. IEEE Control. Syst. Mag. 24(2), 30–46 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  44. Ramos-Paja, C.A., Giral, R., Martinez-Salamero, L., Romano, J., Romero, A., Spagnuolo, G.: A PEM fuel-cell model featuring oxygen-excess-ratio estimation and power-electronics interaction. IEEE Trans. Ind. Electron. 57(6), 1914–1924 (2010)

    Article  Google Scholar 

  45. Ramos Paja, C.A., Romero Nevado, A., Giral Castillón, R., Martinez-Salamero, L., Sanchez Saenz, C.I.: Switching and linear power stages evaluation for PEM fuel cell emulation. Int. J. Circuit Theory Appl. 39(5), 475–499 (2011)

    Article  Google Scholar 

  46. Restrepo, C., Ramos-Paja, C.A., Giral, R., Calvente, J., Romero, A.: Fuel cell emulator for oxygen excess ratio estimation on power electronics applications. Comput. Electr. Eng. 38(4), 926–937 (2012)

    Article  Google Scholar 

  47. Shtessel, Y.B., Baev, S., Edwards, C., Spurgeon, S.: HOSM observer for a class of non-minimum phase causal nonlinear mimo systems. IEEE Trans. Autom. Control. 55(2), 543–548 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  48. Slotine, J.J.E., Li, W., et al.: Applied nonlinear control, vol. 199. Prentice Hall New Jersey (1991)

    Google Scholar 

  49. Song, R.H., Kim, C.S., Shin, D.R.: Effects of flow rate and starvation of reactant gases on the performance of phosphoric acid fuel cells. J. Power Sources 86(1–2), 289–293 (2000)

    Article  Google Scholar 

  50. Talj, R.J., Hissel, D., Ortega, R., Becherif, M., Hilairet, M.: Experimental validation of a PEM fuel-cell reduced-order model and a moto-compressor higher order sliding-mode control. IEEE Trans. Ind. Electron. 57(6), 1906–1913 (2010)

    Article  Google Scholar 

  51. Thawornkuno, C., Panjapornpon, C.: Estimation of water content in PEM fuel cell. Chiang Mai J. Sci. 35(1), 212–220 (2008)

    Google Scholar 

  52. Utkin, V.I.: Sliding Modes in Control and Optimization. Springer, Berlin (1992)

    Book  MATH  Google Scholar 

  53. Vepa, R.: Adaptive state estimation of a PEM fuel cell. IEEE Trans. Energy Convers. 27(2), 457–467 (2012)

    Article  Google Scholar 

  54. Xiao, B., Hu, Q., Zhang, Y.: Adaptive sliding mode fault tolerant attitude tracking control for flexible spacecraft under actuator saturation. IEEE Trans. Control. Syst. Technol. 20(6), 1605–1612 (2012)

    Article  Google Scholar 

  55. Yan, X.G., Spurgeon, S.K., Edwards, C.: State and parameter estimation for nonlinear delay systems using sliding mode techniques. IEEE Trans. Autom. Control 58(4), 1023–1029 (2013)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianxing Liu .

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Liu, J., Gao, Y., Yin, Y., Wang, J., Luo, W., Sun, G. (2020). Sliding Mode Observer of PEMFC Systems. In: Sliding Mode Control Methodology in the Applications of Industrial Power Systems. Studies in Systems, Decision and Control, vol 249. Springer, Cham. https://doi.org/10.1007/978-3-030-30655-7_6

Download citation

Publish with us

Policies and ethics