Skip to main content

Introduction of Proton Exchange Membrane Fuel Cell Systems

  • Chapter
  • First Online:
  • 482 Accesses

Part of the book series: Studies in Systems, Decision and Control ((SSDC,volume 249))

Abstract

This chapter introduces some fuel cells classified into five different categories based on the electrolyte chemistry. The power generation mechanism of the PEMFC is presented. The PEMFC air-feed system model including supply manifold model, compressor model, cathode flow model, etc. is detailed. For an understandable SMC scenario design to the PEMFC, an experimental validation performed through the HIL test bench is provided, based on a commercial twin screw compressor and a real-time PEMFC emulator.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Amphlett, J.C., Baumert, R., Mann, R.F., Peppley, B.A., Roberge, P.R., Harris, T.J.: Performance modeling of the Ballard Mark IV solid polymer electrolyte fuel cell II. Empirical model development. J. Electrochem. Soc. 142(1), 9–15 (1995)

    Google Scholar 

  2. Arce, A., del Real, A., Bordons, C., Ramirez, D.: Real-time implementation of a constrained MPC for efficient airflow control in a pem fuel cell. IEEE Trans. Ind. Electron. 57(6), 1892–1905 (2010)

    Article  Google Scholar 

  3. Grove, W., Egeland, O.: A small voltaic battery of great energy. Philos. Mag. 15, 287–293 (1839)

    Google Scholar 

  4. Gruber, J., Bordons, C., Oliva, A.: Nonlinear MPC for the airflow in a PEM fuel cell using a volterra series model. Control. Eng. Pract. 20(2), 205–217 (2012)

    Article  Google Scholar 

  5. Kroposki, B.: DUIT: Distributed utility integration test. National Renewable Energy Laboratory, Distributed Utility Associates Livermore, California (2003). https://www.nrel.gov/docs/fy03osti/34389.pdf

  6. Larminie, J., Dicks, A., McDonald, M.S.: Fuel Cell Systems Explained, vol. 2. Wiley, Chichester (2003)

    Book  Google Scholar 

  7. Liu, J., Laghrouche, S., Ahmed, F.S., Wack, M.: PEM fuel cell air-feed system observer design for automotive applications: an adaptive numerical differentiation approach. Int. J. Hydrog. Energy 39(30), 17210–17221 (2014)

    Google Scholar 

  8. Matraji, I., Laghrouche, S., Jemei, S., Wack, M.: Robust control of the PEM fuel cell air-feed system via sub-optimal second order sliding mode. Appl. Energy 104, 945–957 (2013)

    Article  Google Scholar 

  9. Nguyen, T.V., White, R.E.: A water and heat management model for proton-exchange-membrane fuel cells. J. Electrochem. Soc. 140(8), 2178–2186 (1993)

    Article  Google Scholar 

  10. Pukrushpan, J., Peng, H., Stefanopoulou, A.: Control-oriented modeling and analysis of fuel cell reactant flow for automotive fuel cell systems. ASME J. Dyn. Syst., Meas. Control. 126(1), 14–25 (2004)

    Article  Google Scholar 

  11. Pukrushpan, J.T., Stefanopoulou, A.G., Peng, H.: Control of Fuel Cell Power Systems: Principles, Modeling, Analysis and Feedback Design. Springer Science & Business Media (2004)

    Google Scholar 

  12. Suh, K.W.: Modeling, analysis and control of fuel cell hybrid power systems. Ph.D. thesis, Department of Mechanical Engineering, The university of Michigan (2006)

    Google Scholar 

  13. Talj, R.J., Hissel, D., Ortega, R., Becherif, M., Hilairet, M.: Experimental validation of a PEM fuel-cell reduced-order model and a moto-compressor higher order sliding-mode control. IEEE Trans. Ind. Electron. 57(6), 1906–1913 (2010)

    Article  Google Scholar 

  14. Tekin, M., Hissel, D., Pera, M.C., Kauffmann, J.M.: Energy-management strategy for embedded fuel-cell systems using fuzzy logic. IEEE Trans. Ind. Electron. 54(1), 595–603 (2007)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianxing Liu .

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Liu, J., Gao, Y., Yin, Y., Wang, J., Luo, W., Sun, G. (2020). Introduction of Proton Exchange Membrane Fuel Cell Systems. In: Sliding Mode Control Methodology in the Applications of Industrial Power Systems. Studies in Systems, Decision and Control, vol 249. Springer, Cham. https://doi.org/10.1007/978-3-030-30655-7_4

Download citation

Publish with us

Policies and ethics