Skip to main content

Part of the book series: Studies in Systems, Decision and Control ((SSDC,volume 249))

  • 460 Accesses

Abstract

This chapter introduces in detail the fuel-cell-based industrial power systems and several additional types of equipment required to make the fuel cell work at the optimal operating point. It also stresses some system failures or mechanical faults of the vulnerable power generation systems that can cause the shutdown or the permanent damage of the fuel cell. This monograph is focused on the polymer electrolyte membrane fuel cell air-feed system and power electronics systems. The motivation behind concentrating on these systems and the importance of their observation are discussed, and the outline of the monograph is described in this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Al-Durra, A., Yurkovich, S., Guezennec, Y.: Study of nonlinear control schemes for an automotive traction PEM fuel cell system. Int. J. Hydrog. Energy 35(20), 11291–11307 (2010)

    Article  Google Scholar 

  2. Besançon, G.: Nonlinear Observers and Applications, vol. 363. Springer (2007)

    Google Scholar 

  3. Chen, F., Chu, H.S., Soong, C.Y., Yan, W.M.: Effective schemes to control the dynamic behavior of the water transport in the membrane of PEM fuel cell. J. Power Sources 140(2), 243–249 (2005)

    Article  Google Scholar 

  4. Emelyanov, S., Utkin, V.: Application of automatic control systems of variable structure for the control of objects whose parameters vary over a wide range. Dokl. Akad. Nauk SSSR 152(2), 299–301 (1963)

    MathSciNet  Google Scholar 

  5. Feroldi, D., Serra, M., Riera, J.: Design and analysis of fuel-cell hybrid systems oriented to automotive applications. IEEE Trans. Veh. Technol. 58(9), 4720–4729 (2009)

    Article  Google Scholar 

  6. Gao, W.: Fundamentals of Variable Structure Control Theory. Press of Science and Technology in China (in Chinese), Beijing (1990)

    Google Scholar 

  7. Hung, J.Y., Gao, W., Hung, J.C.: Variable structure control: a survey. IEEE Trans. Ind. Electron. 40(1), 2–22 (1993)

    Article  Google Scholar 

  8. Itkis, U.: Control Systems of Variable Structure. Wiley, New York (1976)

    Google Scholar 

  9. Kaynak, O., Erbatur, K., Ertugnrl, M.: The fusion of computationally intelligent methodologies and sliding-mode control–a survey. IEEE Trans. Ind. Electron. 48(1), 4–17 (2001)

    Article  Google Scholar 

  10. Luenberger, D.G.: Observing the state of a linear system. IEEE Trans. Mil. Electron. 8(2), 74–80 (1964)

    Article  Google Scholar 

  11. Perruquetti, W., Barbot, J.P.: Sliding Mode Control in Engineering. CRC Press (2002)

    Google Scholar 

  12. Pukrushpan, J.T., Stefanopoulou, A.G., Peng, H.: Control of Fuel Cell Power Systems: Principles, Modeling, Analysis and Feedback Design. Springer Science & Business Media (2004)

    Google Scholar 

  13. Raminosoa, T., Blunier, B., Fodorean, D., Miraoui, A.: Design and optimization of a switched reluctance motor driving a compressor for a PEM fuel-cell system for automotive applications. IEEE Trans. Ind. Electron. 57(9), 2988–2997 (2010)

    Article  Google Scholar 

  14. Saif, M., Xiong, Y.: Sliding mode observers and their application in fault diagnosis. In: Fault Diagnosis and Fault Tolerance for Mechatronic Systems: Recent Advances, pp. 1–57. Springer (2003)

    Google Scholar 

  15. Suh, K.W.: Modeling, analysis and control of fuel cell hybrid power systems. Ph.D. thesis, Department of Mechanical Engineering, The university of Michigan (2006)

    Google Scholar 

  16. Tan, S.C., Lai, Y.M., Tse, C.K.: Sliding Mode Control of Switching Power Converters: Techniques and Implementation. CRC Press (2011)

    Google Scholar 

  17. Utkin, V.: Variable structure systems with sliding modes. IEEE Trans. Autom. Control. 22(2), 212–222 (1977)

    Article  MathSciNet  Google Scholar 

  18. Utkin, V., Gulder, J., Shi, J.: Sliding Mode Control in Electro-mechanical Systems. Automation and Control Engineering Series, vol. 34. Taylor & Francis Group (2009)

    Google Scholar 

  19. Utkin, V.I.: Sliding Modes in Control and Optimization. Springer, Berlin (1992)

    Book  Google Scholar 

  20. Vahidi, A., Stefanopoulou, A., Peng, H.: Current management in a hybrid fuel cell power system: a model-predictive control approach. IEEE Trans. Control. Syst. Technol. 14(6), 1047–1057 (2006)

    Article  Google Scholar 

  21. Wu, L., Shi, P., Su, X.: Sliding Mode Control of Uncertain Parameter-Switching Hybrid Systems. Wiley (2014)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianxing Liu .

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Liu, J., Gao, Y., Yin, Y., Wang, J., Luo, W., Sun, G. (2020). General Introduction. In: Sliding Mode Control Methodology in the Applications of Industrial Power Systems. Studies in Systems, Decision and Control, vol 249. Springer, Cham. https://doi.org/10.1007/978-3-030-30655-7_1

Download citation

Publish with us

Policies and ethics