Skip to main content

An Entropy-Based Graph Construction Method for Representing and Clustering Biological Data

  • Conference paper
  • First Online:
Book cover VIII Latin American Conference on Biomedical Engineering and XLII National Conference on Biomedical Engineering (CLAIB 2019)

Abstract

Unsupervised learning methods are commonly used to perform the non-trivial task of uncovering structure in biological data. However, conventional approaches rely on methods that make assumptions about data distribution and reduce the dimensionality of the input data. Here we propose the incorporation of entropy related measures into the process of constructing graph-based representations for biological datasets in order to uncover their inner structure. Experimental results demonstrated the potential of the proposed entropy-based graph data representation to cope with biological applications related to unsupervised learning problems, such as metagenomic binning and neuronal spike sorting, in which it is necessary to organize data into unknown and meaningful groups.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Vogt, J.E.: Unsupervised structure detection in biomedical data. IEEE/ACM Trans. Comput. Biol. Bioinforma. 12(4), 753–760 (2015). https://doi.org/10.1109/TCBB.2015.2394408

    Article  Google Scholar 

  2. Xu, R., Wunsch, D.C.: Clustering algorithms in biomedical research: a review. IEEE Rev. Biomed. Eng. 3, 120–154 (2010). https://doi.org/10.1109/RBME.2010.2083647

    Article  Google Scholar 

  3. Fortunato, S., Hric, D.: Community detection in networks: a user guide. Phys. Rep. 659, 1–44 (2016). https://doi.org/10.1016/j.physrep.2016.09.002

    Article  MathSciNet  Google Scholar 

  4. de Arruda, G.F., Costa, L.D.F., Rodrigues, F.A.: A complex networks approach for data clustering. Phys. A Stat. Mech. Appl. 391(23), 6174–6183 (2012). https://doi.org/10.1016/j.physa.2012.07.007

    Article  Google Scholar 

  5. Zhang, H., Chen, X.: Network-based clustering and embedding for high-dimensional data visualization. In: 2013 International Conference on Computer-Aided Design and Computer Graphics, pp. 290–297. IEEE (2013). https://doi.org/10.1109/CADGraphics.2013.45

  6. Grünwald, P.D.: The Minimum Description Length Principle. The MIT Press, Cambridge (2007)

    Book  Google Scholar 

  7. Yao, J., Dash, M., Tan, S.T., Liu, H.: Entropy-based fuzzy clustering and fuzzy modeling. Fuzzy Sets Syst. 113(3), 381–388 (2000). https://doi.org/10.1016/S0165-0114(98)00038-4

    Article  MATH  Google Scholar 

  8. Laskaris, N.A., Zafeiriou, S.P.: Beyond FCM: graph-theoretic post-processing algorithms for learning and representing the data structure. Pattern Recognit. 41(8), 2630–2644 (2008). https://doi.org/10.1016/j.patcog.2008.02.005

    Article  MATH  Google Scholar 

  9. Blondel, V.D., Guillaume, J.L., Lambiotte, R., Lefebvre, E.: Fast unfolding of communities in large networks. J. Stat. Mech. Theory Exp. 2008(10), P10008 (2008). https://doi.org/10.1088/1742-5468/2008/10/P10008

    Article  Google Scholar 

  10. Leung, H.C., Yiu, S.M., Yang, B., Peng, Y., Wang, Y., Liu, Z., Chen, J., Qin, J., Li, R., Chin, F.Y.: A robust and accurate binning algorithm for metagenomic sequences with arbitrary species abundance ratio. Bioinformatics 27(11), 1489–1495 (2011). https://doi.org/10.1093/bioinformatics/btr186

    Article  Google Scholar 

  11. Ceballos, J., Ariza-Jiménez, L., Pinel, N.: Standardized approaches for assessing metagenomic contig binning performance from Barnes-Hut \(t\)-Stochastic neighbor embeddings. In: VIII Latin American Conference on Biomedical Engineering and XLII National Conference on Biomedical Engineering, pp. 761–768. Springer Nature Switzerland AG (2020). https://doi.org/10.1007/978-3-030-30648-9_101

  12. Ariza-Jiménez, L., Quintero, O., Pinel, N.: Unsupervised fuzzy binning of metagenomic sequence fragments on three-dimensional Barnes-Hut t-Stochastic neighbor embeddings. In: 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 1315–1318. IEEE (2018). https://doi.org/10.1109/EMBC.2018.8512529

  13. van der Maaten, L.: Accelerating t-SNE using tree-based algorithms. J. Mach. Learn. Res. 15, 3221–3245 (2014). http://jmlr.org/papers/v15/vandermaaten14a.html

    MathSciNet  MATH  Google Scholar 

  14. Chaure, F.J., Rey, H.G., Quian Quiroga, R.: A novel and fully automatic spike-sorting implementation with variable number of features. J. Neurophysiol. 120(4), 1859–1871 (2018). https://doi.org/10.1152/jn.00339.2018

    Article  Google Scholar 

  15. Pedreira, C., Martinez, J., Ison, M.J., Quian Quiroga, R.: How many neurons can we see with current spike sorting algorithms? J. Neurosci. Methods 211(1), 58–65 (2012). https://doi.org/10.1016/j.jneumeth.2012.07.010

    Article  Google Scholar 

  16. Newman, M.E., Clauset, A.: Structure and inference in annotated networks. Nat. Commun. 7(May), 1–11 (2016). https://doi.org/10.1038/ncomms11863

    Article  Google Scholar 

  17. Sharon, I., Morowitz, M.J., Thomas, B.C., Costello, E.K., Relman, D.A., Banfield, J.F.: Time series community genomics analysis reveals rapid shifts in bacterial species, strains, and phage during infant gut colonization. Genome Res. 23(1), 111–120 (2013). https://doi.org/10.1101/gr.142315.112

    Article  Google Scholar 

Download references

Acknowledgments

This research was supported by Centro de Excelencia y Apropiación en Big Data y Data Analytics -Alianza CAOBA- and Universidad EAFIT.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leandro Ariza-Jiménez .

Editor information

Editors and Affiliations

Ethics declarations

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ariza-Jiménez, L., Pinel, N., Villa, L.F., Quintero, O.L. (2020). An Entropy-Based Graph Construction Method for Representing and Clustering Biological Data. In: González Díaz, C., et al. VIII Latin American Conference on Biomedical Engineering and XLII National Conference on Biomedical Engineering. CLAIB 2019. IFMBE Proceedings, vol 75. Springer, Cham. https://doi.org/10.1007/978-3-030-30648-9_41

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-30648-9_41

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-30647-2

  • Online ISBN: 978-3-030-30648-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics