Skip to main content

A System for High-Speed Synchronized Acquisition of Video Recording of Rodents During Locomotion

  • Conference paper
  • First Online:

Part of the book series: IFMBE Proceedings ((IFMBE,volume 75))

Abstract

The analysis of locomotion in laboratory rodents allow the study and understand the effects of diseases or conditions that affect the nervous system in the patterns of the rodents using qualitative and quantitative metrics. Many methods for the quantitative analysis of rodents’ locomotion have been previously employed. These methods rely on the use of high-speed video sequence recording that is analyzed through the analysis of the translations of the joints of the extremities of interest along time. However, there does not exist a standard system that allows the acquisition of videos for such type of analysis. In this work, we describe a system and its components for the synchronized acquisition of multiple high-speed video recordings of rodents during locomotion, including the required post-processing image algorithms.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Clarke, K., Heitmeyer, S., Smith, A., Taiwo, Y.: Gait analysis in a rat model of osteoarthrosis. Physiol. Behav. 62(5), 951–954 (1997). https://doi.org/10.1016/S0031-9384(97)00022-X

    Article  Google Scholar 

  2. Amende, I., Kale, A., McCue, S., Glazier, S., Morgan, J.P., Hampton, T.G.: Gait dynamics in mouse models of parkinson’s disease and huntington’s disease. J. Neuroeng. Rehabil. 2(1), 20 (2005). https://doi.org/10.1186/1743-0003-2-20

    Article  Google Scholar 

  3. Hampton, T.G., Amende, I.: Treadmill gait analysis characterizes gait alterations in parkinson’s disease and amyotrophic lateral sclerosis mouse models. J. Motor. Behav. 42(1), 1–4 (2009). https://doi.org/10.1080/00222890903272025

    Article  Google Scholar 

  4. Osuna-Carrasco, L., López-Ruiz, J., Mendizabal-Ruiz, E., De la Torre-Valdovinos, B., Bañuelos-Pineda, J., Jiménez-Estrada, I., Dueñas-Jiménez, S.: Quantitative analysis of hindlimbs locomotion kinematics in spinalized rats treated with tamoxifen plus treadmill exercise. Neuroscience 333, 151–161 (2016). https://doi.org/10.1016/j.neuroscience.2016.07.023

    Article  Google Scholar 

  5. Beare, J.E., Morehouse, J.R., DeVries, W.H., Enzmann, G.U., Burke, D.A., Magnuson, D.S., Whittemore, S.R.: Gait analysis in normal and spinal contused mice using the treadscan system. J. Neurotrauma 26(11), 2045–2056 (2009). https://doi.org/10.1089/neu.2009.0914

    Article  Google Scholar 

  6. Kunkel-Bagden, E., Dai, H.-N., Bregman, B.S.: Methods to assess the development and recovery of locomotor function after spinal cord injury in rats. Exp. Neurol. 119(2), 153–164 (1993). https://doi.org/10.1006/exnr.1993.1017

    Article  Google Scholar 

  7. Santos, P., Williams, S., Thomas, S.: Neuromuscular evaluation using rat gait analysis. J. Neurosci. Methods 61(1), 79–84 (1995). https://doi.org/10.1016/0165-0270(95)00026-Q

    Article  Google Scholar 

  8. Timotius, I.K., Canneva, F., Minakaki, G., Pasluosta, C., Moceri, S., Casadei, N., Eskofier, B.: Dynamic footprints of α-synucleinopathic mice recorded by CatWalk gait analysis. Data Brief 17, 189–193 (2018). https://doi.org/10.1016/j.dib.2017.12.067

    Article  Google Scholar 

  9. Mock, J.T., Knight, S.G., Vann, P.H., Wong, J.M., Davis, D.L., Forster, M.J., Sumien, N.: Gait analyses in mice: effects of age and glutathione deficiency. Aging Dis. 9(4), 634 (2018). https://doi.org/10.14336/AD.2017.0925

    Article  Google Scholar 

  10. Möller, K.Ä., Svärd, H., Suominen, A., Immonen, J., Holappa, J., Stenfors, C.: Gait analysis and weight bearing in pre-clinical joint pain research. J. Neurosci. Methods 300, 92–102 (2018). https://doi.org/10.1016/j.jneumeth.2017.04.011

    Article  Google Scholar 

  11. Gonsalvez, D.G., Yoo, S., Craig, G.A., Wood, R.J., Fletcher, J.L., Murray, S.S., Xiao, J.: Myelin protein zero 180–199 peptide induced experimental autoimmune neuritis in C57BL/6 mice. In: Myelin. Humana Press, New York (2018). https://doi.org/10.1007/978-1-4939-7862-5_19

    Google Scholar 

  12. Haggerty, A.E., Bening, M.R., Pherribo, G., Dauer, E.A., Oudega, M.: Laminin polymer treatment accelerates repair of the crushed peripheral nerve in adult rats. Acta Biomater. 86, 185–193 (2019). https://doi.org/10.1016/j.actbio.2019.01.024

    Article  Google Scholar 

  13. Myers, S.A., Gobejishvili, L., Ohri, S.S., Wilson, C.G., Andres, K.R., Riegler, A.S., Whittemore, S.R.: Following spinal cord injury, PDE4B drives an acute, local inflammatory response and a chronic, systemic response exacerbated by gut dysbiosis and endotoxemia. Neurobiol. Disease 124, 353–363 (2019). https://doi.org/10.1016/j.nbd.2018.12.008

    Article  Google Scholar 

  14. Diogo, C.C., da Costa, L.M., Pereira, J.E., Filipe, V., Couto, P.A., Geuna, S., Armada-da-Silva, P.A., Maurício, A.C., Varejão, A. S. (2019). Kinematic and kinetic gait analysis to evaluate functional recovery in thoracic spinal cord injured rats. Neurosci. Biobehav. Rev. https://doi.org/10.1016/j.neubiorev.2018.12.027

    Article  Google Scholar 

  15. Xu, Y., Tian, N.X., Bai, Q.Y., Chen, Q., Sun, X.H., Wang, Y.: Gait assessment of pain and analgesics: comparison of the DigiGait™ and CatWalk™ gait imaging systems. Neurosci. Bull., 1–18 (2019). https://doi.org/10.1007/s12264-018-00331-y

    Article  Google Scholar 

  16. Duda, R.O., Hart, P.E.: Use of the hough transformation to detect lines and curves in pictures. Comm. ACM 15, 11–15 (1972). https://doi.org/10.1145/361237.361242

    Article  MATH  Google Scholar 

  17. Yang, Z.-G., Ren, L.: SVD-based camera self-calibration and 3-D reconstruction from single-view. In: Proceedings of 2004 International Conference on Machine Learning and Cybernetics, vol. 7. IEEE (2004). https://doi.org/10.1109/icmlc.2004.1384556

  18. McIvor, A.M.: Background subtraction techniques. In: Proceedings of Image and Vision Computing, pp. 3099–3104 (2000)

    Google Scholar 

  19. Haralick, R.M., Sternberg, S.R., Zhuang, X.: Image analysis using mathematical morphology. IEEE Trans. Pattern Anal. Mach. Intell. 4, 532–550 (1987). https://doi.org/10.1109/TPAMI.1987.4767941

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gerardo Mendizabal-Ruiz .

Editor information

Editors and Affiliations

Ethics declarations

Authors declares that there is no conflict of interest regarding the publication of this article.

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ascencio-Piña, C., Pérez-Cisneros, M., Dueñaz-Jimenez, S., Mendizabal-Ruiz, G. (2020). A System for High-Speed Synchronized Acquisition of Video Recording of Rodents During Locomotion. In: González Díaz, C., et al. VIII Latin American Conference on Biomedical Engineering and XLII National Conference on Biomedical Engineering. CLAIB 2019. IFMBE Proceedings, vol 75. Springer, Cham. https://doi.org/10.1007/978-3-030-30648-9_40

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-30648-9_40

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-30647-2

  • Online ISBN: 978-3-030-30648-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics