Skip to main content

Capture of the Voluntary Motor Intention from the Electromyography Signal

  • Conference paper
  • First Online:
VIII Latin American Conference on Biomedical Engineering and XLII National Conference on Biomedical Engineering (CLAIB 2019)

Part of the book series: IFMBE Proceedings ((IFMBE,volume 75))

Included in the following conference series:

Abstract

The objective of this work is to automatically identify basic hand movements: Opening, Closing, Bending, Extension, Pronation and Supination, including the Resting condition. Feature extraction was implemented making use of three approaches: time, frequency and time-frequency domains, obtaining the characteristics Mean Absolute Value (MAV), Root Mean Square (RMS), Wave Length (WL), Autoregressive Coefficients (AR) and Discrete Wavelet Transform (DWT). Principal Component Analysis (PCA) was applied for dimensionality reduction and classification was performed using Linear Discriminant Analysis (LDA). As a result it was possible to identify the movements with success rates that reached 92% with the hybrid vectors conformed by the coefficients MAV, RMS and AR.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Blana, D., Krasoulis, A., Nazarpour, K., Chadwick, E.: Control of a robotic hand with an EMG-driven, real-time biomechanical computer model. In: 8th World Congress of Biomechanics. Newcastle University (2018)

    Google Scholar 

  2. Bulea, T.C., Kilicarslan, A., Ozdemir, R., Paloski, W.H., Contreras-Vidal, J.L.: Simultaneous scalp electroencephalography (EEG), electromyography(EMG), and whole-body segmental inertial recording for multi-modal neural decoding. J. Vis. Exp. 26, e50602 (2013). https://doi.org/10.3791/50602. http://www.jove.com/video/50602

    Article  Google Scholar 

  3. Chan, A.D.C., Green, G.C.: Myoelectric control development toolbox. In: 30th Conference on Canadian Medical Biological Engineering Society, Toronto, Canada, pp. 1–4 (2007). http://www.sce.carleton.ca/faculty/chan/matlab/myoelectriccontroldevelopmenttoolbox.pdf

  4. Chowdhury, R.H., Bin, M., Reaz, I., Alauddin, M., Ali, M., Bakar, A.A.A.: Surface electromyography signal processing and classification techniques. Sensors 13, 12431–12466 (2013). https://doi.org/10.3390/s130912431. http://www.mdpi.com/journal/sensors

    Article  Google Scholar 

  5. Graupe, D., Magnussen, J., Beex, A.: A microprocessor system for multifunctional control of upper-limb prostheses via myoelectric signal identification. IEEE Trans. Autom. Control 23(4), 538–544 (1978). https://doi.org/10.1109/TAC.1978.1101783

    Article  Google Scholar 

  6. Hargrove, L.J., Li, G., Englehart, K.B., Hudgins, B.S.: Principal components analysis preprocessing for improved classification accuracies in pattern-recognition-based myoelectric control. IEEE Trans. Biomed. Eng. 56(5), 1407–1414 (2009). https://doi.org/10.1109/TBME.2008.2008171. http://ieeexplore.ieee.org

    Article  Google Scholar 

  7. Phinyomark, A., Hu, H., Phukpattaranont, P., Limsakul, C.: Application of linear discriminant analysis in dimensionality reduction for hand motion classification. Meas. Sci. Rev. 12(3), 82–89 (2012)

    Article  Google Scholar 

  8. Rouillard, J., Duprès, A., Cabestaing, F., Leclercq, S., Bekaert, M.H., Piau, C., Vannobel, J.M., Lecocq, C.: Hybrid BCI coupling EEG and EMG for severe motor disabilities. Procedia Manuf. 3(Ahfe), 29–36 (2015). https://doi.org/10.1016/j.promfg.2015.07.104. http://dx.doi.org/10.1016/j.promfg.2015.07.104

    Article  Google Scholar 

  9. Saikia, A., Kakoty, N.M., Phukan, N., Balakrishnan, M., Sahai, N., Paul, S., Bhatia, D.: Combination of EMG features and stability index for finger movements recognition. Procedia Comput. Sci. 133, 92–98 (2018)

    Article  Google Scholar 

  10. Wold, S., Esbensen, K., Geladi, P.: Principal component analysis. Chemometr. Intell. Lab. Syst. 2(1), 37–52 (1987). https://doi.org/10.1016/0169-7439(87)80084-9. http://www.sciencedirect.com/science/article/pii/0169743987800849. Proceedings of the Multivariate Statistical Workshop for Geologists and Geochemists

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juan David Chailloux Peguero .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Hidalgo Torres, L.A., San Martín Reyes, Y., Chailloux Peguero, J.D. (2020). Capture of the Voluntary Motor Intention from the Electromyography Signal. In: González Díaz, C., et al. VIII Latin American Conference on Biomedical Engineering and XLII National Conference on Biomedical Engineering. CLAIB 2019. IFMBE Proceedings, vol 75. Springer, Cham. https://doi.org/10.1007/978-3-030-30648-9_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-30648-9_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-30647-2

  • Online ISBN: 978-3-030-30648-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics