Skip to main content

Time Estimation of Topotecan Penetration in Retinoblastoma Cells Through Image Sequence Analysis

  • Conference paper
  • First Online:
VIII Latin American Conference on Biomedical Engineering and XLII National Conference on Biomedical Engineering (CLAIB 2019)

Abstract

Retinoblastoma is the most common intraocular tumor in childhood. Topotecan has been widely used as an antineoplastic agent for retinoblastoma treatment. Topotecan penetration into living tumorspheres is quantified using confocal microscopy. This fluorescent drug dyes the living tissue and it can be recorded in a sequence of images over a period of time. The effective penetration of the drug depends on culture characteristics and requires a very specific timing. This penetration time is calculated empirically by an expert. The purpose of this work is to offer a statistical model to automatically estimate the penetration time of topotecan in the cell, based on the information obtained from a sequence of tumorsphere images.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bates, D., Mächler, M, Bolker, B, Walker, S: Fitting linear mixed-effects models using lme4. arXiv preprint arXiv:1406.5823 (2014)

  2. Bisso, I., Gambini, J.: Ultrasound image segmentation through a fast active contour based algorithm. In: VI Congreso Latinoamericano de IngenierÌa BiomÈdica (2014). https://doi.org/10.1007/978-3-319-13117-7_92

    Chapter  Google Scholar 

  3. Haider, S.A., Cameron, A., Siva, P., Lui, D., Shafiee, M.J., Boroomand, A., Haider, N., Wong, A.: Fluorescence microscopy image noise reduction using a stochastically-connected random field model. Nature Scientific report, vol. 6, p. 20640 (2016). https://doi.org/10.1038/srep20640

  4. Otsu, N.: A threshold selection method from gray-level histogram. IEEE Trans. Syst. Man Cybern. 9, 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076

    Article  Google Scholar 

  5. Perona, P., Malik, J.: Scale-space and edge detection using anisotropic diffusion. IEEE Trans. Pattern Anal. Mach. Intell. 12(7), 629–639 (1990). https://doi.org/10.1109/34.56205

    Article  Google Scholar 

  6. Sadhana, S., Mallika, D.: A review of retina blood vessel detection using image segmentation techniques. Int. J. Innovative Res. Sci. Technol. 3, 247–253 (2017)

    Google Scholar 

  7. Schaiquevich, P., Ceciliano, A., Millan, N., Taich, P., Villasante, F., Fandino, A.C., Dominguez, J., Chantada, G.L.: Intra-arterial chemotherapy is more effective than sequential periocular and intravenous chemotherapy as salvage treatment for relapsed retinoblastoma. Pediatr. Blood Cancer, 766–770 (2013). https://doi.org/10.1002/pbc.24356

    Article  Google Scholar 

  8. Shi, Y.G., Karl, W.C.: A real-time algorithm for the approximation of level-set-based curve evolution. Image Process. 17(5), 645–656 (2008). https://doi.org/10.1109/TIP.2008.920737

    Article  MathSciNet  Google Scholar 

  9. Tobin, K.W., Abdelrahman, M., Chaum, E., Govindasamy, V.P., Karnowski, T.P.: A probabilistic framework for content-based diagnosis of retinal disease. In: 29th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, pp. 6743–6746 (2007). https://doi.org/10.1109/IEMBS.2007.4353909

  10. Winter, U., Aschero, R., Fuentes, F., Buontempo, F., Zugbi, S., Sgroi, M., Sampor, C., Abramson, D., Carcaboso, A., Schaiquevich, P.: Tridimensional retinoblastoma cultures as vitreous seeds models for live-cell imaging of chemotherapy penetration. Int. J. Mol. Sci. 20, 1077 (2019). https://doi.org/10.3390/ijms20051077

    Article  Google Scholar 

  11. Winter, U., Nicolas, M., Sgroi, M., Sampor, C., Torbidoni, A., FandiÒo, A., Chantada, G., Munier, F., Schaiquevich, P.: Assessment of retinoblastoma rna reflux after intravitreal injection of melphalan. Br. J. Ophthalmol. 3, 415–418 (2018). https://doi.org/10.1136/bjophthalmol-2017-310574

    Article  Google Scholar 

  12. Zhao, Y., Rada, L., Chen, K., Harding, S.P., Zheng, Y.: Automated vessel segmentation using infinite perimeter active contour model with hybrid region information with application to retinal images. IEEE Trans. Med. Imaging 34(9), 1797–1807 (2015). https://doi.org/10.1109/TMI.2015.2409024

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juliana Gambini .

Editor information

Editors and Affiliations

Ethics declarations

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Chan, D., Winter, U., Schaiquevich, P., Ramele, R., Gambini, J. (2020). Time Estimation of Topotecan Penetration in Retinoblastoma Cells Through Image Sequence Analysis. In: González Díaz, C., et al. VIII Latin American Conference on Biomedical Engineering and XLII National Conference on Biomedical Engineering. CLAIB 2019. IFMBE Proceedings, vol 75. Springer, Cham. https://doi.org/10.1007/978-3-030-30648-9_35

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-30648-9_35

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-30647-2

  • Online ISBN: 978-3-030-30648-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics