Skip to main content

Protecting the Visual Fidelity of Machine Learning Datasets Using QR Codes

  • Conference paper
  • First Online:
Machine Learning for Cyber Security (ML4CS 2019)

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 11806))

Included in the following conference series:

  • 1776 Accesses

Abstract

Machine learning is becoming increasingly popular in a variety of modern technology. However, research has demonstrated that machine learning models are vulnerable to adversarial examples in their inputs. Potential attacks include poisoning datasets by perturbing input samples to mislead a machine learning model into producing undesirable results. Such perturbations are often subtle and imperceptible from a human’s perspective. This paper investigates two methods of verifying the visual fidelity of image based datasets by detecting perturbations made to the data using QR codes. In the first method, a verification string is stored for each image in a dataset. These verification strings can be used to determine whether an image in the dataset has been perturbed. In the second method, only a single verification string stored and is used to verify whether an entire dataset is intact.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Akhtar, N., Mian, A.S.: Threat of adversarial attacks on deep learning in computer vision: a survey. IEEE Access 6, 14410–14430 (2018)

    Article  Google Scholar 

  2. Biggio, B., Nelson, B., Laskov, P.: Poisoning attacks against support vector machines. In: Proceedings of the 29th International Conference on Machine Learning, ICML 2012, vol. 2, pp. 1807–1814 (2012)

    Google Scholar 

  3. Biggio, B., Roli, F.: Wild patterns: ten years after the rise of adversarial machine learning. Pattern Recogn. 84, 317–331 (2018)

    Article  Google Scholar 

  4. Cardamone, N., d’Amore, F.: DWT and QR code based watermarking for document DRM. In: Yoo, C.D., Shi, Y.-Q., Kim, H.J., Piva, A., Kim, G. (eds.) IWDW 2018. LNCS, vol. 11378, pp. 137–150. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-11389-6_11

    Chapter  Google Scholar 

  5. Chow, Y., Susilo, W., Tonien, J., Vlahu-Gjorgievska, E., Yang, G.: Cooperative secret sharing using QR codes and symmetric keys. Symmetry 10(4), 95 (2018)

    Article  Google Scholar 

  6. Chow, Y.-W., Susilo, W., Tonien, J., Zong, W.: A QR code watermarking approach based on the DWT-DCT technique. In: Pieprzyk, J., Suriadi, S. (eds.) ACISP 2017. LNCS, vol. 10343, pp. 314–331. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-59870-3_18

    Chapter  Google Scholar 

  7. Denso Wave Incorporated. QRcode.com. http://www.qrcode.com/en/

  8. Floyd, R.W., Steinberg, L.: An adaptive algorithm for spatial greyscale. Proc. Soc. Inf. Display 17(2), 75–77 (1976)

    Google Scholar 

  9. Fu, Z., Cheng, Y., Yu, B.: Visual cryptography scheme with meaningful shares based on QR codes. IEEE Access 6, 59567–59574 (2018)

    Article  Google Scholar 

  10. Guan, Z.-H., Huang, F., Guan, W.: Chaos-based image encryption algorithm. Phys. Lett. A 346(1–3), 153–157 (2005)

    Article  Google Scholar 

  11. International Organization for Standardization: Information technology—automatic identification and data capture techniques–QR code 2005 bar code symbology specification. ISO/IEC 18004:2006 (2006)

    Google Scholar 

  12. Ishizuka, H., Echizen, I., Iwamura, K., Sakurai, K.: A zero-watermarking-like steganography and potential applications. In: 2014 Tenth International Conference on Intelligent Information Hiding and Multimedia Signal Processing, pp. 459–462, August 2014

    Google Scholar 

  13. Kang, Q., Li, K., Yang, J.: A digital watermarking approach based on DCT domain combining QR code and chaotic theory. In: 2014 Eleventh International Conference on Wireless and Optical Communications Networks (WOCN), pp. 1–7, September 2014

    Google Scholar 

  14. Lee, H.C., Dong, C.R., Lin, T.M.: Digital watermarking based on JND model and QR code features. In: Pan, J.S., Yang, C.N., Lin, C.C. (eds.) Advances in Intelligent Systems and Applications. SIST, vol. 21, pp. 141–148. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-35473-1_15

    Chapter  Google Scholar 

  15. Li, D., Liu, Z., Cui, L.: A zero-watermark scheme for identification photos based on QR code and visual cryptography. Int. J. Secur. Appl. 10(1), 203–214 (2016)

    Google Scholar 

  16. Liu, F., Yan, W.Q.: Various applications of visual cryptography. In: Liu, F., Yan, W.Q. (eds.) Visual Cryptography for Image Processing and Security, pp. 127–143. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-09644-5_5

    Chapter  Google Scholar 

  17. Mallat, S.: A theory for multiresolution signal decomposition: the wavelet representation. IEEE Trans. Pattern Anal. Mach. Intell. 11(7), 674–693 (1989)

    Article  Google Scholar 

  18. Papernot, N., McDaniel, P.D., Goodfellow, I.J., Jha, S., Celik, Z.B., Swami, A.: Practical black-box attacks against machine learning. In: Karri, R., Sinanoglu, O., Sadeghi, A., Yi, X. (eds.) Proceedings of the 2017 ACM on Asia Conference on Computer and Communications Security, AsiaCCS 2017, Abu Dhabi, United Arab Emirates, 2–6 April 2017, pp. 506–519. ACM (2017)

    Google Scholar 

  19. Rubinstein, B.I., et al.: Antidote: understanding and defending against poisoning of anomaly detectors. In: Proceedings of the 9th ACM SIGCOMM Conference on Internet Measurement, IMC 2009, pp. 1–14. ACM, New York (2009)

    Google Scholar 

  20. Seenivasagam, V., Velumani, R.: A QR code based zero-watermarking scheme for authentication of medical images in teleradiology cloud. Comput. Math. Methods Med. 2013(516465), 16 (2013)

    MathSciNet  MATH  Google Scholar 

  21. Thulasidharan, P.P., Nair, M.S.: QR code based blind digital image watermarking with attack detection code. AEU - Int. J. Electron. Commun. 69(7), 1074–1084 (2015)

    Article  Google Scholar 

  22. Tkachenko, I., Puech, W., Destruel, C., Strauss, O., Gaudin, J., Guichard, C.: Two-level QR code for private message sharing and document authentication. IEEE Trans. Inf. Forensics Secur. 11(3), 571–583 (2016)

    Article  Google Scholar 

  23. Xiao, H., Biggio, B., Brown, G., Fumera, G., Eckert, C., Roli, F.: Is feature selection secure against training data poisoning? In: 32nd International Conference on Machine Learning, ICML 2015, vol. 2, pp. 1689–1698 (2015)

    Google Scholar 

Download references

Acknowledgment

The authors would like to acknowledge the support of the NSW Cybersecurity Network grant, the NUW Alliance grant and the National Natural Science Foundation of China (Nos. 61572382 and 61702401) that were awarded for this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yang-Wai Chow .

Editor information

Editors and Affiliations

Appendix

Appendix

Fig. 7.
figure 7

Example results for ‘peppers’ image (a) input image; (b) dithered \(LL_{2}\) sub-band; (c) visual depiction of the verification string; (d) \(S_{R}\) after JPEG compression; (e) \(S_{R}\) after noise; (f) \(S_{R}\) after blurring; (g) reconstructed QR code from (d); (h) reconstructed QR code from (e); (i) reconstructed QR code from (f).

Fig. 8.
figure 8

Example results for ‘mandrill’ image (a) input image; (b) dithered \(LL_{2}\) sub-band; (c) visual depiction of the verification string; (d) \(S_{R}\) after JPEG compression; (e) \(S_{R}\) after noise; (f) \(S_{R}\) after blurring; (g) reconstructed QR code from (d); (h) reconstructed QR code from (e); (i) reconstructed QR code from (f).

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Chow, YW. et al. (2019). Protecting the Visual Fidelity of Machine Learning Datasets Using QR Codes. In: Chen, X., Huang, X., Zhang, J. (eds) Machine Learning for Cyber Security. ML4CS 2019. Lecture Notes in Computer Science(), vol 11806. Springer, Cham. https://doi.org/10.1007/978-3-030-30619-9_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-30619-9_23

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-30618-2

  • Online ISBN: 978-3-030-30619-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics