Skip to main content

Algorithms for Tracking Changes in Preference Distributions

  • Chapter
  • First Online:
Sequential Decision-Making in Musical Intelligence

Part of the book series: Studies in Computational Intelligence ((SCI,volume 857))

  • 346 Accesses

Abstract

As described in Sect. 1.1, one of the core problems in music recommendation over time, and in content recommendation in general, is that the distributional properties of music, and people’s musical tastes, change over time in ways that are nontrivial to track and predict. This informational challenge is a special case of concept drift—the change, either abrupt or gradual, in the underlying structure of data. Concept drift is a common and fundamental problem in machine learning in general, so any solutions designed to combat drift in content recommendation, even ones specific for that setting, are broadly applicable to ML research in general. In this chapter I focus on the application of reinforcement learning approaches to handle concept drift, specifically through model retraining, both in its general context and directly with respect to tracking people’s temporal listening habits as reflected by a real world dataset.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    In the literature this method is typically abbreviated as “DDM”, but to avoid confusion with the Drift-Diffusion Model used in Chap. 5, which is also abbreviated as DDM, I use the abbreviation DDetM for the Gamma et al. algorithm instead.

References

  1. F. Schroff, D. Kalenichenko, J. Philbin, Facenet: A unified embedding for face recognition and clustering, in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (2015), pp. 815–823

    Google Scholar 

  2. C.A. Gomez-Uribe, N. Hunt, The netflix recommender system: algorithms, business value, and innovation. ACM Trans. Manag. Inf. Syst. 6(4), 13 (2015)

    Google Scholar 

  3. M. Chiosi, B. Freeman, AT&T’s SDN controller implementation based on opendaylight. Open Daylight Summit, 7 (2015)

    Google Scholar 

  4. G. Widmer, M. Kubat, Learning in the presence of concept drift and hidden contexts. Mach. Learn. 23(1), 69–101 (1996)

    Google Scholar 

  5. A. Tsymbal, The problem of concept drift: definitions and related work. Comput. Sci. Dep. Trinity Collage Dublin 106, 58 (2004)

    Google Scholar 

  6. I. Žliobaitė, Learning under concept drift: an overview. arXiv:1010.4784 (2010)

  7. J. Gama, I. Žliobaitė, A. Bifet, M. Pechenizkiy, A. Bouchachia, A survey on concept drift adaptation. ACM Comput. Surv. (CSUR) 46(4), 44 (2014)

    Article  Google Scholar 

  8. R. Klinkenberg, T. Joachims, Detecting concept drift with support vector machines, in ICML (2000), pp. 487–494

    Google Scholar 

  9. J. Gama, P. Medas, G. Castillo, P. Rodrigues, Learning with drift detection, in Brazilian Symposium on Artificial Intelligence (Springer, 2004), pp. 286–295

    Google Scholar 

  10. D. Brzezinski, J. Stefanowski, Reacting to different types of concept drift: the accuracy updated ensemble algorithm. IEEE Trans. Neural Netw. Learn. Syst. 25(1), 81–94 (2014)

    Article  Google Scholar 

  11. I. Frías-Blanco, J. del Campo-Ávila, G. Ramos-Jiménez, R. Morales-Bueno, A. Ortiz-Díaz, Y. Caballero-Mota, Online and non-parametric drift detection methods based on Hoeffding’s bounds. IEEE Trans. Knowl. Data Eng. 27(3), 810–823 (2015)

    Article  Google Scholar 

  12. L.L. Minku, X. Yao, DDD: a new ensemble approach for dealing with concept drift. IEEE Trans. Knowl. Data Eng. 24(4), 619–633 (2012)

    Article  Google Scholar 

  13. J. Kivinen, A.J. Smola, R.C. Williamson, Online learning with kernels. IEEE Trans. Signal Process. 52(8), 2165–2176 (2004)

    Article  MathSciNet  Google Scholar 

  14. P. Ruvolo, E. Eaton, ELLA: an efficient lifelong learning algorithm. ICML 1(28), 507–515 (2013)

    Google Scholar 

  15. S. Singh, R.L. Lewis, A.G. Barto, J. Sorg, Intrinsically motivated reinforcement learning: an evolutionary perspective. IEEE Trans. Auton. Ment. Dev. 2(2), 70–82 (2010)

    Article  Google Scholar 

  16. M.B. Ring, Continual learning in reinforcement environments. Ph.D. thesis, University of Texas at Austin, 1994

    Google Scholar 

  17. M.E. Taylor, P. Stone, Transfer learning for reinforcement learning domains: a survey. J. Mach. Learn. Res. 10(1), 1633–1685 (2009)

    Google Scholar 

  18. L. Torrey, J. Shavlik, Transfer learning. Handb. Res. Mach. Learn. Appl. Trends: Algorithms Methods Tech. 1, 242 (2009)

    Google Scholar 

  19. S.J. Pan, Q. Yang, A survey on transfer learning. IEEE Trans. Knowl. Data Eng. 22(10), 1345–1359 (2010)

    Article  Google Scholar 

  20. E. Liebman, E. Zavesky, P. Stone, A stitch in time: autonomous model management via reinforcement learning, in Proceedings of the 17th International Conference on Autonomous Agents and Multiagent Systems, International Foundation for Autonomous Agents and Multiagent Systems (2018)

    Google Scholar 

  21. R.S. Sutton, A.G. Barto, Introduction to Reinforcement Learning, 1st edn. (MIT Press, Cambridge, MA, USA, 1998)

    MATH  Google Scholar 

  22. C.-S. Chow, J.N. Tsitsiklis, et al. An optimal multigrid algorithm for discrete-time stochastic control (1989)

    Google Scholar 

  23. W.G. Cochran, Sampling Techniques (Wiley, New York, 1977

    Google Scholar 

  24. G.J. Gordon, Stable function approximation in dynamic programming, in Proceedings of the Twelfth International Conference on Machine Learning (1995), pp. 261–268

    Google Scholar 

  25. A. Jansson, C. Raffel, T. Weyde, This is my jam–data dump

    Google Scholar 

  26. T. Bertin-Mahieux, D.P. Ellis, B. Whitman, P. Lamere, The million song dataset, in ISMIR, vol. 2, (2011), p. 10

    Google Scholar 

  27. S. Lawrence, C.L. Giles, A.C. Tsoi, A.D. Back, Face recognition: a convolutional neural-network approach. IEEE Trans. Neural Netw. 8(1), 98–113 (1997)

    Article  Google Scholar 

  28. C. Szepesvári, R. Munos, Finite time bounds for sampling based fitted value iteration, in Proceedings of the 22nd International Conference on Machine Learning (ACM, 2005), pp. 880–887

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elad Liebman .

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Liebman, E. (2020). Algorithms for Tracking Changes in Preference Distributions. In: Sequential Decision-Making in Musical Intelligence. Studies in Computational Intelligence, vol 857. Springer, Cham. https://doi.org/10.1007/978-3-030-30519-2_4

Download citation

Publish with us

Policies and ethics