Skip to main content

IBDNet: Lightweight Network for On-orbit Image Blind Denoising

  • Conference paper
  • First Online:
Artificial Neural Networks and Machine Learning – ICANN 2019: Image Processing (ICANN 2019)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 11729))

Included in the following conference series:

Abstract

To reduce the data transmission pressure from the satellite to the ground, it is meaningful to process the image directly on the satellite. As the cornerstone of image processing, image denoising exceedingly improves the image quality to contribute to subsequent works. For on-orbit image denoising, we propose an end-to-end trainable image blind denoising network, namely IBDNet. Unlike existing image denoising methods, which either have a large number of parameters or are unable to perform image blind denoising, the proposed network is lightweight due to the residual bottleneck blocks as the main structure. Although our network does not use clean images for training, the experimental results on the public datasets indicate that the blindly denoised image quality of our method can be roughly the same as that of the state-of-the-art denoisers. Furthermore, we deploy the model (513 KB only) on the same equipment as the one on a satellite, which verifies the feasibility of running on the satellite.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90

  2. Buades, A., Coll, B., Morel, J.M.: A non-local algorithm for image denoising. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition, vol. 2, pp. 60–65. IEEE (2005)

    Google Scholar 

  3. Dabov, K., Foi, A., Katkovnik, V., Egiazarian, K.: Image denoising by sparse 3-D transform-domain collaborative filtering. IEEE Trans. Image Process. 16(8), 2080–2095 (2007). https://doi.org/10.1109/TIP.2007.901238

    Article  MathSciNet  Google Scholar 

  4. Elad, M., Aharon, M.: Image denoising via sparse and redundant representations over learned dictionaries. IEEE Trans. Image Process. 15(12), 3736–3745 (2006). https://doi.org/10.1109/TIP.2006.881969

    Article  MathSciNet  Google Scholar 

  5. Burger, H.C., Schuler, C.J., Harmeling, S.: Image denoising: can plain neural networks compete with BM3D? In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 2392–2399. IEEE (2012)

    Google Scholar 

  6. Schmidt, U., Roth, S.: Shrinkage fields for effective image restoration. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2774–2781 (2014). https://doi.org/10.1109/CVPR.2014.349

  7. Chen, Y., Pock, T.: Trainable nonlinear reaction diffusion: a flexible framework for fast and effective image restoration. IEEE Trans. Pattern Anal. Mach. Intell. 39(6), 1256–1272 (2017)

    Article  Google Scholar 

  8. Zhang, K., Zuo, W., Chen, Y., Meng, D., Zhang, L.: Beyond a Gaussian denoiser: residual learning of deep cnn for image denoising. IEEE Trans. Image Process. 26(7), 3142–3155 (2017). https://doi.org/10.1109/TIP.2017.2662206

    Article  MathSciNet  MATH  Google Scholar 

  9. Zhang, K., Zuo, W., Zhang, L.: FFDNet: toward a fast and flexible solution for CNN-based image denoising. IEEE Trans. Image Process. 27(9), 4608–4622 (2018). https://doi.org/10.1109/TIP.2018.2839891

    Article  MathSciNet  Google Scholar 

  10. Mao, X., Shen, C., Yang, Y.B.: Image restoration using very deep convolutional encoder-decoder networks with symmetric skip connections. In: Advances in Neural Information Processing Systems, pp. 2802–2810 (2016)

    Google Scholar 

  11. Chen, J., Chen, J., Chao, H., Yang, M.: Image blind denoising with generative adversarial network based noise modeling. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3155–3164 (2018). https://doi.org/10.1109/CVPR.2018.00333

  12. Lehtinen, J., et al.: Noise2noise: learning image restoration without clean data. arXiv preprint arXiv:1803.04189 (2018)

  13. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  14. Ling, L., Junxing, H., Fengge, W., Junsuo, Z.: A research and strategy of remote sensing image denoising algorithms. arXiv preprint arXiv:1905.10236 (2019)

  15. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556 (2014)

  16. LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proc. IEEE 86(11), 2278–2324 (1998). https://doi.org/10.1109/5.726791

    Article  Google Scholar 

  17. Lin, M., Chen, Q., Yan, S.: Network in network. arXiv preprint arXiv:1312.4400 (2013)

  18. Szegedy, C., Liu, W., Jia, Y., et al.: Going deeper with convolutions. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1–9 (2015)

    Google Scholar 

  19. Maas, A.L., Hannun, A.Y., Ng, A.Y.: Rectifier nonlinearities improve neural network acoustic models. In: International Conference on Machine Learning, vol. 30, no. 1, p. 3 (2013)

    Google Scholar 

  20. Kim, J., Kwon Lee, J., Mu Lee, K.: Deeply-recursive convolutional network for image super-resolution. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1637–1645 (2016). https://doi.org/10.1109/CVPR.2016.181

  21. Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. arXiv preprint arXiv:1502.03167 (2015)

  22. Maggiori, E., Tarabalka, Y., Charpiat, G., Alliez, P.: Can semantic labeling methods generalize to any city? The Inria aerial image labeling benchmark. In: IEEE International Geoscience and Remote Sensing Symposium, pp. 3226–3229. IEEE (2017)

    Google Scholar 

  23. Agustsson, E., Timofte, R.: NTIRE 2017 challenge on single image super-resolution: dataset and study. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, pp. 126–135 (2017). https://doi.org/10.1109/CVPRW.2017.150

  24. Martin, D., Fowlkes, C., Tal, D., Malik, J.: A database of human segmented natural images and its application to evaluating segmentation algorithms and measuring ecological statistics. In: IEEE International Conference on Computer Vision (2001)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ling Li .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Li, L., Hu, J., Lin, Y., Wu, F., Zhao, J. (2019). IBDNet: Lightweight Network for On-orbit Image Blind Denoising. In: Tetko, I., Kůrková, V., Karpov, P., Theis, F. (eds) Artificial Neural Networks and Machine Learning – ICANN 2019: Image Processing. ICANN 2019. Lecture Notes in Computer Science(), vol 11729. Springer, Cham. https://doi.org/10.1007/978-3-030-30508-6_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-30508-6_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-30507-9

  • Online ISBN: 978-3-030-30508-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics