Skip to main content

Recurrent Connections Aid Occluded Object Recognition by Discounting Occluders

  • Conference paper
  • First Online:
Artificial Neural Networks and Machine Learning – ICANN 2019: Image Processing (ICANN 2019)

Abstract

Recurrent connections in the visual cortex are thought to aid object recognition when part of the stimulus is occluded. Here we investigate if and how recurrent connections in artificial neural networks similarly aid object recognition. We systematically test and compare architectures comprised of bottom-up (B), lateral (L) and top-down (T) connections. Performance is evaluated on a novel stereoscopic occluded object recognition dataset. The task consists of recognizing one target digit occluded by multiple occluder digits in a pseudo-3D environment. We find that recurrent models perform significantly better than their feedforward counterparts, which were matched in parametric complexity. Furthermore, we analyze how the network’s representation of the stimuli evolves over time due to recurrent connections. We show that the recurrent connections tend to move the network’s representation of an occluded digit towards its un-occluded version. Our results suggest that both the brain and artificial neural networks can exploit recurrent connectivity to aid occluded object recognition.

This work was supported by the European Union’s Horizon 2020 research and innovation programme under grant agreement \(\text {N}^{\underline{{\text {o}}}}\) 713010 (GOAL-Robots, Goal-based Open-ended Autonomous Learning Robots).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Adesnik, H., Scanziani, M.: Lateral competition for cortical space by layer-specific horizontal circuits. Nature 464(7292), 1155 (2010). https://doi.org/10.1038/nature08935

    Article  Google Scholar 

  2. Benjamini, Y., Hochberg, Y.: Controlling the false discovery rate: a practical and powerful approach to multiple testing. J. Royal Stat. Soc. Ser. B (Methodol.) 57(1), 289–300 (1995). https://doi.org/10.1111/j.2517-6161.1995.tb02031.x

    MathSciNet  MATH  Google Scholar 

  3. Brincat, S.L., Connor, C.E.: Dynamic shape synthesis in posterior inferotemporal cortex. Neuron 49(1), 17–24 (2006). https://doi.org/10.1016/j.neuron.2005.11.026

    Article  Google Scholar 

  4. Cichy, R.M., Pantazis, D., Oliva, A.: Resolving human object recognition in space and time. Nat. Neurosci. 17(3), 455 (2014). https://doi.org/10.1038/nn.3635

    Article  Google Scholar 

  5. DiCarlo, J.J., Zoccolan, D., Rust, N.C.: How does the brain solve visual object recognition? Neuron 73(3), 415–434 (2012). https://doi.org/10.1016/j.neuron.2012.01.010

    Article  Google Scholar 

  6. Dietterich, T.G.: Approximate statistical tests for comparing supervised classification learning algorithms. Neural Comput. 10(7), 1895–1923 (1998). https://doi.org/10.1162/089976698300017197

    Article  Google Scholar 

  7. Felleman, D.J., Van Essen, D.C.: Distributed hierarchical processing in the primate cerebral cortex. Cereb. Cortex 1(1), 1–47 (1991). https://doi.org/10.1093/cercor/1.1.1

    Article  Google Scholar 

  8. Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. In: International Conference on Machine Learning, pp. 448–456 (2015)

    Google Scholar 

  9. Isik, L., Meyers, E.M., Leibo, J.Z., Poggio, T.: The dynamics of invariant object recognition in the human visual system. J. Neurophysiol. 111(1), 91–102 (2014). https://doi.org/10.1152/jn.00394.2013

    Article  Google Scholar 

  10. Johnson, J.S., Olshausen, B.A.: The recognition of partially visible natural objects in the presence and absence of their occluders. Vision. Res. 45(25), 3262–3276 (2005). https://doi.org/10.1016/j.visres.2005.06.007

    Article  Google Scholar 

  11. Kingma, D.P., Ba, J.L.: Adam: a method for stochastic optimization. In: Proceedings of the 3rd International Conference on Learning Representations (2014)

    Google Scholar 

  12. Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep convolutional neural networks. In: Advances in Neural Information Processing Systems, pp. 1097–1105 (2012)

    Google Scholar 

  13. LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. Nature 521(7553), 436 (2015). https://doi.org/10.1038/nature14539

    Article  Google Scholar 

  14. LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proc. IEEE 86(11), 2278–2324 (1998). https://doi.org/10.1109/5.726791

    Article  Google Scholar 

  15. Liang, M., Hu, X.: Recurrent convolutional neural network for object recognition. In: The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3367–3375 (2015)

    Google Scholar 

  16. Maaten, L.V.D., Hinton, G.: Visualizing data using t-SNE. J. Mach. Learn. Res. 9(Nov), 2579–2605 (2008)

    Google Scholar 

  17. McNemar, Q.: Note on the sampling error of the difference between correlated proportions or percentages. Psychometrika 12(2), 153–157 (1947). https://doi.org/10.1007/BF02295996

    Article  Google Scholar 

  18. O’Reilly, R.C., Wyatte, D., Herd, S., Mingus, B., Jilk, D.J.: Recurrent processing during object recognition. Front. Psychol. 4, 124 (2013). https://doi.org/10.3389/fpsyg.2013.00124

    Article  Google Scholar 

  19. Riesenhuber, M., Poggio, T.: Hierarchical models of object recognition in cortex. Nat. Neurosci. 2(11), 1019–1025 (1999). https://doi.org/10.1038/14819

    Article  Google Scholar 

  20. Rumelhart, D.E., Hinton, G.E., Williams, R.J.: Learning representations by back-propagating errors. Nature 323(6088), 533 (1986). https://doi.org/10.1038/323533a0

    Article  MATH  Google Scholar 

  21. Serre, T., Oliva, A., Poggio, T.: A feedforward architecture accounts for rapidcategorization. Proc. Natl. Acad. Sci. 104(15), 6424–6429 (2007). https://doi.org/10.1073/pnas.0700622104

    Article  Google Scholar 

  22. Spoerer, C.J., McClure, P., Kriegeskorte, N.: Recurrent convolutional neural networks: a better model of biological object recognition. Front. Psychol. 8, 1551 (2017). https://doi.org/10.3389/fpsyg.2017.01551

    Article  Google Scholar 

  23. Sporns, O., Zwi, J.D.: The small world of the cerebral cortex. Neuroinformatics 2(2), 145–162 (2004). https://doi.org/10.1385/NI:2:2:145

    Article  Google Scholar 

  24. Tang, H., et al.: Spatiotemporal dynamics underlying object completion in human ventral visual cortex. Neuron 83(3), 736–748 (2014). https://doi.org/10.1016/j.neuron.2014.06.017

    Article  Google Scholar 

  25. Thorpe, S., Fize, D., Marlot, C.: Speed of processing in the human visual system. Nature 381(6582), 520–522 (1996). https://doi.org/10.1038/381520a0

    Article  Google Scholar 

  26. Wyatte, D., Curran, T., O’Reilly, R.: The limits of feedforward vision: recurrent processing promotes robust object recognition when objects are degraded. J. Cogn. Neurosci. 24(11), 2248–2261 (2012). https://doi.org/10.1162/jocn_a_00282

    Article  Google Scholar 

  27. Zeiler, M.D., Krishnan, D., Taylor, G.W., Fergus, R.: Deconvolutional networks. In: 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2528–2535. IEEE (2010). https://doi.org/10.1109/CVPR.2010.5539957

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Markus Roland Ernst .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ernst, M.R., Triesch, J., Burwick, T. (2019). Recurrent Connections Aid Occluded Object Recognition by Discounting Occluders. In: Tetko, I., Kůrková, V., Karpov, P., Theis, F. (eds) Artificial Neural Networks and Machine Learning – ICANN 2019: Image Processing. ICANN 2019. Lecture Notes in Computer Science(), vol 11729. Springer, Cham. https://doi.org/10.1007/978-3-030-30508-6_24

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-30508-6_24

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-30507-9

  • Online ISBN: 978-3-030-30508-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics